That line is [ y = 2 cos(2x) ].
This site is not suitable for graphs.
Sin(2x) = -cos(x)But sin(2x) = 2 sin(x) cos(x)Substitute it:2 sin(x) cos(x) = -cos(x)Divide each side by cos(x):2 sin(x) = -1sin(x) = -1/2x = 210°x = 330°
f(x)=cos(sin(x2)) [u(v)]' = u'(v) * v' so f'(x) = cos'(sinx(x2)) * sin'(x2) * (x2)' f'(x) = -sin(sin(x2)) * cos(x2) * 2x = -2x sin(sin(x2)) cos(x2)
0. sin 2x = cos 3x 1. sin 2x = sin (pi/2 - 3x) [because cos u = sin (pi/2 - u)] 2. [...]
tan x + (tan x)(sec 2x) = tan 2x work dependently on the left sidetan x + (tan x)(sec 2x); factor out tan x= tan x(1 + sec 2x); sec 2x = 1/cos 2x= tan x(1 + 1/cos 2x); LCD = cos 2x= tan x[cos 2x + 1)/cos 2x]; tan x = sin x/cos x and cos 2x = 1 - 2 sin2 x= (sin x/cos x)[(1 - 2sin2 x + 1)/cos 2x]= (sin x/cos x)[2(1 - sin2 x)/cos 2x]; 1 - sin2 x = cos2 x= (sin x/cos x)[2cos2 x)/cos 2x]; simplify cos x= (2sin x cos x)/cos 2x; 2 sinx cos x = sin 2x= sin 2x/cos 2x= tan 2x
That line is [ y = 2 cos(2x) ].
This site is not suitable for graphs.
sin(2x), cos(2x), cosec(2x), sec(2x), tan(x) and cot(x) are all possible functions.
Sin(2x) = -cos(x)But sin(2x) = 2 sin(x) cos(x)Substitute it:2 sin(x) cos(x) = -cos(x)Divide each side by cos(x):2 sin(x) = -1sin(x) = -1/2x = 210°x = 330°
f(x)=cos(sin(x2)) [u(v)]' = u'(v) * v' so f'(x) = cos'(sinx(x2)) * sin'(x2) * (x2)' f'(x) = -sin(sin(x2)) * cos(x2) * 2x = -2x sin(sin(x2)) cos(x2)
Sec(2x) = 1/Cos(2x)
2 x cosine squared x -1 which also equals cos (2x)
y = (x^2)(sin x)(2x)(cos x) - 2sin xy' = [[(x^2)(sin x)][(2x)(cos x)]]' - (2sin x)'y' = [[(x^2)(sin x)]'[(2x)(cos x)] + [(2x)(cos x)]'[(x^2)(sin x)]]- (2sin x)'y' = [[(x^2)'(sin x) + (sin x)'(x^2)][(2x)(cos x)] + [(2x)'(cos x) + (cos x)'(2x)][(x^2)(sin x)] ] - 2(cos x)y' = [[(2x)(sin x )+ (cos x)(x^2)][(2x)(cos x)] + [2cos x - (sin x)(2x)][(x^2)(sin x)]] - 2(cos x)y' = (4x^2)(sin x cos x) + (2x^3)(cos x)^2 + (2x^2)(sin x cos x) - (2x^3)(sin x)^2 - 2cos xy' = (6x^2)(sin x cos x) + (2x^3)(cos x)^2 - (2x^3)(sin x)^2 - 2cos x (if you want, you can stop here, or you can continue)y' = (3x^2)(2sin x cos x) + (2x^3)[(cos x)^2 - (sin x)^2] - 2cos xy' = (3x^2)(sin 2x) + (2x^3)(cos 2x) - 2 cos xy' = (2x^3)(cos 2x) + (3x^2)(sin 2x) - 2 cos x
cscx-sinx=(cosx)(cotx) 1/sinx-sinx=(cosx)(cosx/sinx) (1/sinx)-(sin^2x/sinx)=cos^2x/sinx cos^2x/sinx=cos^2x/sinx Therefore LS=RS You have to remember some trig identities when answering these questions. In this case, you need to recall that sin^2x+cos^2x=1. Also, always switch tanx cotx cscx secx in terms of sinx and cosx.
0. sin 2x = cos 3x 1. sin 2x = sin (pi/2 - 3x) [because cos u = sin (pi/2 - u)] 2. [...]
3