6.
Chat with our AI personalities
The unit's digit in the expansion of 2 raised to the 725th power is 8. This can be determined by using the concept of the "unit's digit law". This law states that the units digit of a number raised to any power is the same as the units digit of the number itself. In this case, the number is 2, which has a units digit of 2, so the units digit of 2 to the 725th power is also 2. However, this is not the final answer. To get the unit's digit of 2 to the 725th power, we must use the "repeating pattern law". This law states that when a number is raised to any power, the unit's digit will follow a repeating pattern. For 2, this pattern is 8, 4, 2, 6. This means that the units digit of 2 to any power will follow this pattern, repeating every 4 powers. So, if we look at the 725th power of 2, we can see that it is in the 4th cycle of this repeating pattern. This means that the units digit of 2 to the 725th power is 8.
8.796093e+12= 2 to the 43rd power
The units digit of 159*445*7762*39 is the units digit of the product of the units digits of the four numbers, that is, the units digit of 9*5*2*9 Since there is a 5 and a 2 in that, the units digit is 0.
When the tens digit is even and the units digit is 0, 4 or 8 or the tens digit is odd and the units digit is 2 or 6.
Since neither the three hundred, nor the ten can contribute to the units digit in the answer, you look for a pattern in the units digit in the powers of 2n.20 = 121 = 222 = 423 = 824 = 2and after that , the pattern repeats, 4, 8, 2, 4, 8, 2, ...So if n (mod 3) = 1 the units digit is 2if n (mod 3) = 2 the units digit is 4and if n (mod 3) = 0 the units digit is 8where n (mod 3) is the remainder when n is divided by 3.312 is divisible by 3 [3+1+2=6 is divisible by 3] so 312 mod(3) =0 and so the units digit is 8.Since neither the three hundred, nor the ten can contribute to the units digit in the answer, you look for a pattern in the units digit in the powers of 2n.20 = 121 = 222 = 423 = 824 = 2and after that , the pattern repeats, 4, 8, 2, 4, 8, 2, ...So if n (mod 3) = 1 the units digit is 2if n (mod 3) = 2 the units digit is 4and if n (mod 3) = 0 the units digit is 8where n (mod 3) is the remainder when n is divided by 3.312 is divisible by 3 [3+1+2=6 is divisible by 3] so 312 mod(3) =0 and so the units digit is 8.Since neither the three hundred, nor the ten can contribute to the units digit in the answer, you look for a pattern in the units digit in the powers of 2n.20 = 121 = 222 = 423 = 824 = 2and after that , the pattern repeats, 4, 8, 2, 4, 8, 2, ...So if n (mod 3) = 1 the units digit is 2if n (mod 3) = 2 the units digit is 4and if n (mod 3) = 0 the units digit is 8where n (mod 3) is the remainder when n is divided by 3.312 is divisible by 3 [3+1+2=6 is divisible by 3] so 312 mod(3) =0 and so the units digit is 8.Since neither the three hundred, nor the ten can contribute to the units digit in the answer, you look for a pattern in the units digit in the powers of 2n.20 = 121 = 222 = 423 = 824 = 2and after that , the pattern repeats, 4, 8, 2, 4, 8, 2, ...So if n (mod 3) = 1 the units digit is 2if n (mod 3) = 2 the units digit is 4and if n (mod 3) = 0 the units digit is 8where n (mod 3) is the remainder when n is divided by 3.312 is divisible by 3 [3+1+2=6 is divisible by 3] so 312 mod(3) =0 and so the units digit is 8.