Try doing 3 to some easy numbers and look for a pattern.
3^1 = 3
3^2 = 9
3^3 = 27
3^4 = 81
3^5 = 243
3^6 = 729
3^7 = 2187
3^8 = 6561
3^9 = 19683
Notice the pattern of last digits goes 3, 9, 7, 1 and repeats with a period of 4.
46 divided by 4 gives a remainder of 2 so the answer is the same as 3^2 which is 9.
it is 3
3 to a power divisible by 4 will have a units digit of 1.The powers of 3 are 3, 9, 27, 81 ... obviously, the next one will have a units digit of 1x3 or 3, the next one will have a units digit of 3x3 or 9, the next one will have a units digit of 7 (because 9x3 is 27), the next one will have a units digit of 1 (because 7x3 is 21), and then the cycle starts over with a units digit of 3 again.
7
Oh, dude, okay, so when you raise 2013 to the power of 2013, you're basically asking what the units digit of that massive number is. Well, lucky for you, you don't need to calculate the whole thing because the units digit of a number repeats in a pattern. So, the units digit of 2013 to the power of 2013 is 7. Cool, right?
To find the units digit of 3 to the 200th power, we need to observe the pattern of units digits as we raise 3 to higher powers. The units digit of 3 to any power follows a repeating cycle: 3, 9, 7, 1. Since the cycle has a length of 4, we can divide 200 by 4 to find the remainder. 200 divided by 4 gives a remainder of 0, meaning the units digit of 3 to the 200th power is the last digit in the cycle, which is 1.
Power 2: units digit 9. Multiply by 49 again to get power 4: units digit 1. So every 4th power gives units digit 1. So 16th power has units digit 1, so the previous power, the 15th must have units digit 3.
3
it is 3
3 to a power divisible by 4 will have a units digit of 1.The powers of 3 are 3, 9, 27, 81 ... obviously, the next one will have a units digit of 1x3 or 3, the next one will have a units digit of 3x3 or 9, the next one will have a units digit of 7 (because 9x3 is 27), the next one will have a units digit of 1 (because 7x3 is 21), and then the cycle starts over with a units digit of 3 again.
1
7
Oh, dude, okay, so when you raise 2013 to the power of 2013, you're basically asking what the units digit of that massive number is. Well, lucky for you, you don't need to calculate the whole thing because the units digit of a number repeats in a pattern. So, the units digit of 2013 to the power of 2013 is 7. Cool, right?
To find the units digit of 3 to the 200th power, we need to observe the pattern of units digits as we raise 3 to higher powers. The units digit of 3 to any power follows a repeating cycle: 3, 9, 7, 1. Since the cycle has a length of 4, we can divide 200 by 4 to find the remainder. 200 divided by 4 gives a remainder of 0, meaning the units digit of 3 to the 200th power is the last digit in the cycle, which is 1.
To find the units digit of a number raised to a power, we can look for patterns in the units digits of the powers of that number. For 2, the units digits of the powers cycle in a pattern: 2, 4, 8, 6. Since 2011 is 3 more than a multiple of 4 (2011 = 4 * 502 + 3), the units digit of 2 to the power of 2011 will be the fourth number in the cycle, which is 6.
Since neither the three hundred, nor the ten can contribute to the units digit in the answer, you look for a pattern in the units digit in the powers of 2n.20 = 121 = 222 = 423 = 824 = 2and after that , the pattern repeats, 4, 8, 2, 4, 8, 2, ...So if n (mod 3) = 1 the units digit is 2if n (mod 3) = 2 the units digit is 4and if n (mod 3) = 0 the units digit is 8where n (mod 3) is the remainder when n is divided by 3.312 is divisible by 3 [3+1+2=6 is divisible by 3] so 312 mod(3) =0 and so the units digit is 8.Since neither the three hundred, nor the ten can contribute to the units digit in the answer, you look for a pattern in the units digit in the powers of 2n.20 = 121 = 222 = 423 = 824 = 2and after that , the pattern repeats, 4, 8, 2, 4, 8, 2, ...So if n (mod 3) = 1 the units digit is 2if n (mod 3) = 2 the units digit is 4and if n (mod 3) = 0 the units digit is 8where n (mod 3) is the remainder when n is divided by 3.312 is divisible by 3 [3+1+2=6 is divisible by 3] so 312 mod(3) =0 and so the units digit is 8.Since neither the three hundred, nor the ten can contribute to the units digit in the answer, you look for a pattern in the units digit in the powers of 2n.20 = 121 = 222 = 423 = 824 = 2and after that , the pattern repeats, 4, 8, 2, 4, 8, 2, ...So if n (mod 3) = 1 the units digit is 2if n (mod 3) = 2 the units digit is 4and if n (mod 3) = 0 the units digit is 8where n (mod 3) is the remainder when n is divided by 3.312 is divisible by 3 [3+1+2=6 is divisible by 3] so 312 mod(3) =0 and so the units digit is 8.Since neither the three hundred, nor the ten can contribute to the units digit in the answer, you look for a pattern in the units digit in the powers of 2n.20 = 121 = 222 = 423 = 824 = 2and after that , the pattern repeats, 4, 8, 2, 4, 8, 2, ...So if n (mod 3) = 1 the units digit is 2if n (mod 3) = 2 the units digit is 4and if n (mod 3) = 0 the units digit is 8where n (mod 3) is the remainder when n is divided by 3.312 is divisible by 3 [3+1+2=6 is divisible by 3] so 312 mod(3) =0 and so the units digit is 8.
I guess you mean what's the units digit of 32011. It is 7. To work this out, see how the units digit of 3n changes; it goes: 3, 9, 7, 1, 3, 9, 7, 1, ... (only the first 8 powers are shown) repeating the same sequence of 4 digits. So if we find the remainder of 2011 divided by 4, it will tell us which of the four numbers (3, 9, 7, 1) will be the units digit of 32011: 2011 ÷ 4 ⇒ remainder 3, so the 3rd digit is the required digit: 7. (If there had been no remainder, then the 4th digit, namely 1, would have been the required value.)
3