An hexagon
Chat with our AI personalities
5 diagonals * * * * * That is not correct since two of these would be lines joining the vertex to adjacent vertices (one on either side). These are sides of the polygon, not diagonals. The number of diagonals from any vertex of a polygon with n sides is n-3.
7-3 = 4
47 sides. Take a vertex of an n-sided polygon. There are n-1 other vertices. It is already joined to its 2 neighbours, leaving n-3 other vertices not connected to it. Thus n-3 diagonals can be drawn in from each vertex. For n=50, n-3 = 50-3 = 47 diagonals can be drawn from each vertex. The total number of diagonals in an n-sided polygon would imply n-3 diagonals from each of the n vertices giving n(n-3). However, the diagonal from vertex A to C would be counted twice, once for vertex A and again for vertex C, thus there are half this number of diagonals, namely: number of diagonals in an n-sided polygon = n(n-3)/2.
An n-sided polygon wil have n*(n-3)/2 diagonals.Consider joining each vertex to every other vertex. That gives potentially n-1 vertices. However, two of these will be sides of the polygon and so not diagonals. So each vertex gives rise to (n-3) diagonals. There are n vertices in the polygon and so that gives n*(n-3) diagonals. But, this method counts each diagonal twice: once from each end and so the correct answer is n*(n-3)/2.
That polygon is called a "triangle". It has no diagonals.