(0,1,0,1,...)
((-1)^n)
Every convergent sequence is Cauchy. Every Cauchy sequence in Rk is convergent, but this is not true in general, for example within S= {x:x€R, x>0} the Cauchy sequence (1/n) has no limit in s since 0 is not a member of S.
A convergent boundary is a deforming region where two tectonic plates or fragments move toward each other and collide. Some examples are; the forming of the Himalayas, New Zealand, and the Aleutian Islands.
The limits on an as n goes to infinity is aThen for some epsilon greater than 0, chose N such that for n>Nwe have |an-a| < epsilon.Now if m and n are > N we have |an-am|=|(am -a)-(an -a)|< or= |am -an | which is < or equal to 2 epsilor so the sequence is Cauchy.
Not always true. Eg the divergent series 1,0,2,0,3,0,4,... has both convergent and divergent sub-sequences.
The answer is yes is and only if da limit of the sequence is a bounded function.The suficiency derives directly from the definition of the uniform convergence. The necesity follows from making n tend to infinity in |fn(x)|
((-1)^n)
You can use the comparison test. Since the convergent sequence divided by n is less that the convergent sequence, it must converge.
JUB
Every convergent sequence is Cauchy. Every Cauchy sequence in Rk is convergent, but this is not true in general, for example within S= {x:x€R, x>0} the Cauchy sequence (1/n) has no limit in s since 0 is not a member of S.
no converse is not true
Wrong answer above. A limit is not the same thing as a limit point. A limit of a sequence is a limit point but not vice versa. Every bounded sequence does have at least one limit point. This is one of the versions of the Bolzano-Weierstrass theorem for sequences. The sequence {(-1)^n} actually has two limit points, -1 and 1, but no limit.
It could be divergent eg 1+1+1+1+... Or, it could be oscillating eg 1-1+1-1+ ... So there is no definition for a sequence that is not convergent except non-convergent.
it is an acceptor language.it bounded with both ends
They are divided by divergent, convergent AND transform boundaries.
If a monotone sequence An is convergent, then a limit exists for it. On the other hand, if the sequence is divergent, then a limit does not exist.
For the statement "convergence implies boundedness," the converse statement would be "boundedness implies convergence."So, we are asking if "boundedness implies convergence" is a true statement.Pf//By way of contradiction, "boundedness implies convergence" is false.Let the sequence (Xn) be defined asXn = 1 if n is even andXn = 0 if n is odd.So, (Xn) = {X1,X2,X3,X4,X5,X6...} = {0,1,0,1,0,1,...}Note that this is a divergent sequence.Also note that for all n, -1 < Xn < 2Therefore, the sequence (Xn) is bounded above by 2 and below by -1.As we can see, we have a bounded function that is divergent. Therefore, by way of contradiction, we have proven the converse false.Q.E.D.