If the question is, Is y = x4 an exponential function ? then the answer is no.An exponential function is one where the variable appears as an exponent.So, y = 4x is an exponential function.
an exponential function flipped over the line y=x
The y-intercept of the graph of 4x + 2y =12 is probably 6
Since the logarithmic function is the inverse of the exponential function, then we can say that f(x) = 103x and g(x) = log 3x or f-1(x) = log 3x. As we say that the logarithmic function is the reflection of the graph of the exponential function about the line y = x, we can also say that the exponential function is the reflection of the graph of the logarithmic function about the line y = x. The equations y = log(3x) or y = log10(3x) and 10y = 3x are different ways of expressing the same thing. The first equation is in the logarithmic form and the second equivalent equation is in exponential form. Notice that a logarithm, y, is an exponent. So that the question becomes, "changing from logarithmic to exponential form": y = log(3x) means 10y = 3x, where x = (10y)/3.
The function y = x is the graph that passes from the points (-1, -1), (0, 0), and (1, 1) The function y = 4x is the graph that passes form the points (-1, -4), (0, 0), and (1, 4) Sketch these graphs in a same x and y coordinate system, and you can see both of them
If the question is, Is y = x4 an exponential function ? then the answer is no.An exponential function is one where the variable appears as an exponent.So, y = 4x is an exponential function.
An exponential function is of the form y = a^x, where a is a constant. The inverse of this is x = a^y --> y = ln(x)/ln(a), where ln() means the natural log.
The best way to sketch a graph of the function y -2x 2-4x-6 is to first get the values of Y and X and then use the values to sketch the graph.
an exponential function flipped over the line y=x
An exponential function is a nonlinear function in the form y=ab^x, where a isn't equal to zero. In a table, consecutive output values have a common ratio. a is the y-intercept of the exponential function and b is the rate of growth/decay.
Since there are no "following" points, none of them.
y = -4x The y-intercept is zero. That is, the graph passes through the origin.
The y-intercept of the graph of 4x + 2y =12 is probably 6
Since the logarithmic function is the inverse of the exponential function, then we can say that f(x) = 103x and g(x) = log 3x or f-1(x) = log 3x. As we say that the logarithmic function is the reflection of the graph of the exponential function about the line y = x, we can also say that the exponential function is the reflection of the graph of the logarithmic function about the line y = x. The equations y = log(3x) or y = log10(3x) and 10y = 3x are different ways of expressing the same thing. The first equation is in the logarithmic form and the second equivalent equation is in exponential form. Notice that a logarithm, y, is an exponent. So that the question becomes, "changing from logarithmic to exponential form": y = log(3x) means 10y = 3x, where x = (10y)/3.
The function y = x is the graph that passes from the points (-1, -1), (0, 0), and (1, 1) The function y = 4x is the graph that passes form the points (-1, -4), (0, 0), and (1, 4) Sketch these graphs in a same x and y coordinate system, and you can see both of them
y = 4x is a formula or open statement. It can be used to define the function, f = [(x,y) : y = 4x} , commonly denoted by f(x) = 4x.
y=xsquared-4x+2