answersLogoWhite

0


Best Answer

To solve this, you need to find values of x where cos(x)

=

xsin(x).

First of all, 0 is not a solution because cos(0) =

1, and sin(0) =

  1. Since 0 is not a solution, divide both sides of the equation by sin(x)

to get cot(x)

=

x (remember that cos divided by sin is the same as cot). The new question to answer is, when is cot(x)

=

x? Using Wolfram Alpha, the results are

x ±9.52933440536196...

x ±6.43729817917195...

x ±3.42561845948173...

x ±0.860333589019380... there will be an infinite number of solutions.

If you'd like to do the calculation yourself (not asking WolframAlpha)

then there's a trick which almost always works, even for equations which cant be done analytically.

Starting with the basic equation, cos(x)

=

x*sin(x),

transpose it to a form starting with "x =".

In this case you could get: x =

1/tan(x), x =

cot(x)

or from tan(x)

=

1/x you get x =

Arctan(1/x).

Because I like to do my calcs

on an old calculator which only has Arctan

and not Arccotan

(Inverse cotangent(x))

I use the last above - x =

Arctan(1/x)

Starting with a value like 0.5, hit the 1/x key then shift tan keys. Just keep repeating those two operations and the display will converge on 0.860333. Too easy. This example of the method is not a good one as it takes about 25 iterations to converge to within 0.0000001 of the right answer. It is unusually slow.

And finally, this method has only 50% chance of working first try. We were lucky picking x =

Arctan(1/x). x =

1/tan(x) diverges ind the iterations do not converge on the answer.

So if you try this method on another problem and it diverges, just transpose the equation again and have another go.

Starting with x^2 + x - 3 =

0,

and iterating x =

3-x^2, you find it diverges, so

try x =

sqr(3-x) which (with care and about 25 iterations) converges on 1.302775638.

User Avatar

swastigarg

Lvl 8
3y ago
This answer is:
User Avatar
User Avatar

Emile Kessler

Lvl 1
3y ago
idk if your right
More answers
User Avatar

Wiki User

11y ago

To solve this, you need to find values of x where cos(x)

=

xsin(x).



First of all, 0 is not a solution because cos(0) =

1, and sin(0) =

0. Since 0 is not a solution, divide both sides of the equation by sin(x)

to get cot(x)

=

x (remember that cos divided by sin is the same as cot). The new question to answer is, when is cot(x)

=

x? Using Wolfram Alpha, the results are

x ±9.52933440536196...
x ±6.43729817917195...
x ±3.42561845948173...
x ±0.860333589019380... there will be an infinite number of solutions.

If you'd like to do the calculation yourself (not asking WolframAlpha)

then there's a trick which almost always works, even for equations which cant be done analytically.

Starting with the basic equation, cos(x)

=

x*sin(x),

transpose it to a form starting with "x =".

In this case you could get: x =

1/tan(x), x =

cot(x)

or from tan(x)

=

1/x you get x =

Arctan(1/x).

Because I like to do my calcs

on an old calculator which only has Arctan

and not Arccotan

(Inverse cotangent(x))

I use the last above - x =

Arctan(1/x)

Starting with a value like 0.5, hit the 1/x key then shift tan keys. Just keep repeating those two operations and the display will converge on 0.860333. Too easy. This example of the method is not a good one as it takes about 25 iterations to converge to within 0.0000001 of the right answer. It is unusually slow.

And finally, this method has only 50% chance of working first try. We were lucky picking x =

Arctan(1/x). x =

1/tan(x) diverges ind the iterations do not converge on the answer.

So if you try this method on another problem and it diverges, just transpose the equation again and have another go.

Starting with x^2 + x - 3 =

0,

and iterating x =

3-x^2, you find it diverges, so

try x =

sqr(3-x) which (with care and about 25 iterations) converges on 1.302775638.

This answer is:
User Avatar

User Avatar

crizanopia boi

Lvl 2
3y ago
This answer is:
User Avatar
User Avatar

Annalise Koch

Lvl 1
3y ago
Where did you get your answer

Add your answer:

Earn +20 pts
Q: How do you solve cosx - xsinx equals 0?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

How would you find x when 0 equals 2sinxcosx-cosx?

2sinxcosx-cosx=0 Factored : cosx(2sinx-1)=0 2 solutions: cosx=0 or sinx=.5 For cosx=0, x=90 or 270 degrees For sinx=.5, x=30 degrees x = {30, 90, 270}


Sinx plus cosx equals 0?

x = 3pi/4


Is there any way to solve a system of equations with C and D as constants and x and y as variables sinx plus cozy - C equals 0 cosx plus siny - D equals 0?

0


Sin2x - radical 2 cosx equals 0?

Sin2x = radical 2


What are the solutions of 2 cos squared x minus cos x equals 1?

2cos2x - cosx -1 = 0 Factor: (2cosx + 1)(cosx - 1) = 0 cosx = {-.5, 1} x = {...0, 120, 240, 360,...} degrees


Cos x plus sin x equals 0?

cosx + sinx = 0 when sinx = -cosx. By dividing both sides by cosx you get: sinx/cosx = -1 tanx = -1 The values where tanx = -1 are 3pi/4, 7pi/4, etc. Those are equivalent to 135 degrees, 315 degrees, etc.


Determine exact solution for cosx minus 0.5 equals 0?

X=60 how did you get that? could you show all the steps?


How do you solve 2Sinx 1 equals 0?

2sinx+1 equals 0


Determine exact solution for cosx - 0.5 equals 0?

cos x - 0.5 = 0 ⇒ cos x = 0.5 ⇒ x = 2nπ ± π/3


How do you prove the following equation the quantity of sin theta divided by 1 minus cos theta minus the quantity 1 plus cos theta divided by sin theta equals 0?

You will have to bear with the angle being represented by x because this browser will not allow characters from other alphabets!sin^2x + cos^2x = 1=> sin^2x = 1 - cos^x = (1 + cosx)(1 - cosx)Divide both sides by sinx (assuming that sinx is not zero).=> sinx = (1 + cosx)(1 - cosx)/sinxDivide both sides by (1 - cosx)=> sinx/(1 - cosx) = (1 + cosx)/sinx=> sinx/(1 - cosx) - (1 + cosx)/sinx = 0


How do you solve y-2y'-3y equals 0?

For y - 2y - 3y equals 0, y equals 0.


How does secx plus 1 divided by cotx equal 1 plus sinx divided by cosx?

secx = 1/cosxand 1/cotx = tanx, therefore1/cosx + tanx = 1 + sinx/cosx, andsin/cos = tanx, therefore1/cosx + tanx = 1 + tanx, therefore1/cosx = 1, therfore1 = cosx.So, therfore, it is not neccesarily true.But if you meansecx plus 1 divided by cotx equals (1 plus sinx) divided by cosx(this is probably what you mean) Let's start over!secx = 1/cosxand 1/cotx = tanx, therefore1/cosx + tanx = (1+sinx)/cosx therefore1/cosx + tanx = 1/cosx + sinx/cosxsinx/cosx = tanx therfore1/cosx + tanx = 1/cosx + tanxDo you think this is correct? Subtract both sides by 1/cosx + tanx:0 = 0So, therefore, this is correct!(BTW, I'm in Grade 6! :P)