answersLogoWhite

0

What else can I help you with?

Related Questions

How would you find x when 0 equals 2sinxcosx-cosx?

2sinxcosx-cosx=0 Factored : cosx(2sinx-1)=0 2 solutions: cosx=0 or sinx=.5 For cosx=0, x=90 or 270 degrees For sinx=.5, x=30 degrees x = {30, 90, 270}


Sinx plus cosx equals 0?

x = 3pi/4


Sin2x - radical 2 cosx equals 0?

Sin2x = radical 2


Is there any way to solve a system of equations with C and D as constants and x and y as variables sinx plus cozy - C equals 0 cosx plus siny - D equals 0?

0


What are the solutions of 2 cos squared x minus cos x equals 1?

2cos2x - cosx -1 = 0 Factor: (2cosx + 1)(cosx - 1) = 0 cosx = {-.5, 1} x = {...0, 120, 240, 360,...} degrees


Cos x plus sin x equals 0?

cosx + sinx = 0 when sinx = -cosx. By dividing both sides by cosx you get: sinx/cosx = -1 tanx = -1 The values where tanx = -1 are 3pi/4, 7pi/4, etc. Those are equivalent to 135 degrees, 315 degrees, etc.


Determine exact solution for cosx minus 0.5 equals 0?

X=60 how did you get that? could you show all the steps?


How do you solve 2Sinx 1 equals 0?

2sinx+1 equals 0


Determine exact solution for cosx - 0.5 equals 0?

cos x - 0.5 = 0 ⇒ cos x = 0.5 ⇒ x = 2nπ ± π/3


How do you solve y-2y'-3y equals 0?

For y - 2y - 3y equals 0, y equals 0.


How do you prove the following equation the quantity of sin theta divided by 1 minus cos theta minus the quantity 1 plus cos theta divided by sin theta equals 0?

You will have to bear with the angle being represented by x because this browser will not allow characters from other alphabets!sin^2x + cos^2x = 1=> sin^2x = 1 - cos^x = (1 + cosx)(1 - cosx)Divide both sides by sinx (assuming that sinx is not zero).=> sinx = (1 + cosx)(1 - cosx)/sinxDivide both sides by (1 - cosx)=> sinx/(1 - cosx) = (1 + cosx)/sinx=> sinx/(1 - cosx) - (1 + cosx)/sinx = 0


How does secx plus 1 divided by cotx equal 1 plus sinx divided by cosx?

secx = 1/cosxand 1/cotx = tanx, therefore1/cosx + tanx = 1 + sinx/cosx, andsin/cos = tanx, therefore1/cosx + tanx = 1 + tanx, therefore1/cosx = 1, therfore1 = cosx.So, therfore, it is not neccesarily true.But if you meansecx plus 1 divided by cotx equals (1 plus sinx) divided by cosx(this is probably what you mean) Let's start over!secx = 1/cosxand 1/cotx = tanx, therefore1/cosx + tanx = (1+sinx)/cosx therefore1/cosx + tanx = 1/cosx + sinx/cosxsinx/cosx = tanx therfore1/cosx + tanx = 1/cosx + tanxDo you think this is correct? Subtract both sides by 1/cosx + tanx:0 = 0So, therefore, this is correct!(BTW, I'm in Grade 6! :P)