There are
1 combination of 4 colours out of 4,
4 combinations of 3 colours out of 4, 6 combinations of 2 colours out of 4,
4 combinations of 1 colour out of 4.
A grand total of 15 (= 24-1) combinations.
To calculate the number of possible combinations of the digits 1, 3, 7, and 9, we can use the formula for permutations of a set of objects, which is n! / (n-r)!. In this case, there are 4 digits and we want to find all possible 4-digit combinations, so n=4 and r=4. Therefore, the number of possible combinations is 4! / (4-4)! = 4! / 0! = 4 x 3 x 2 x 1 = 24. So, there are 24 possible combinations using the digits 1, 3, 7, and 9.
To calculate the number of possible combinations from 10 items, you can use the formula for combinations, which is nCr = n! / r!(n-r)!. In this case, n is the total number of items (10) and r is the number of items you are choosing in each combination (which can range from 1 to 10). So, if you are considering all possible combinations (r=1 to 10), the total number of combinations would be 2^10, which is 1024.
To calculate the number of different 4-digit combinations that can be made using numbers 0 through 9, we use the concept of permutations. Since repetition is allowed, we use the formula for permutations with repetition, which is n^r, where n is the number of options for each digit (10 in this case) and r is the number of digits (4 in this case). Therefore, the number of different 4-digit combinations that can be made using numbers 0 through 9 is 10^4, which equals 10,000 combinations.
Well, honey, if you're looking for the number of combinations of 4 numbers out of 45, it's 1,221,759. But let's be real, you're not gonna be manually counting all those combinations, so thank goodness for math and calculators. Just plug in those numbers and let the magic happen.
nCr=n!/r!/(n-r)!
To calculate the number of 4-number combinations from 1 to 20, we can use the formula for combinations, which is nCr = n! / (r!(n-r)!), where n is the total number of items and r is the number of items to choose. In this case, n = 20 and r = 4. Plugging these values into the formula, we get 20C4 = 20! / (4!(20-4)!) = 4845. Therefore, there are 4845 different 4-number combinations possible from the numbers 1 to 20.
10,000 * * * * * WRONG! That is the number of permutations, NOT the number of combinations. The number of combinations denoted by nCr = n!/[r!*(n-r)!] = 10!/[4!*6!] = 10*9*8*7/(4*3*2*1) = 210
The number of R-combinations in a set of N objects is C= N!/R!(N-R)! or the factorial of N divided by the factorial of R and the Factorial of N minus R. For example, the number of 3 combinations from a set of 4 objects is 4!/3!(4-3)! = 24/6x1= 4.
10,000
To calculate the number of 4-number combinations possible with 16 numbers, you would use the formula for combinations, which is nCr = n! / r!(n-r)!. In this case, n = 16 (the total number of numbers) and r = 4 (the number of numbers in each combination). Plugging these values into the formula, you would calculate 16C4 = 16! / 4!(16-4)! = 1820. Therefore, there are 1820 possible 4-number combinations with 16 numbers.
To calculate the number of possible combinations of the digits 1, 3, 7, and 9, we can use the formula for permutations of a set of objects, which is n! / (n-r)!. In this case, there are 4 digits and we want to find all possible 4-digit combinations, so n=4 and r=4. Therefore, the number of possible combinations is 4! / (4-4)! = 4! / 0! = 4 x 3 x 2 x 1 = 24. So, there are 24 possible combinations using the digits 1, 3, 7, and 9.
Oh, what a lovely question! To find the number of 5-number combinations from 59 numbers, we can use a formula called combinations. It's like mixing colors on your palette! The formula is nCr = n! / r!(n-r)!, where n is the total numbers (59) and r is the number of selections (5). So, for 59 numbers choosing 5 at a time, there are 5,006,386 unique combinations waiting to be discovered! Just imagine all the beautiful possibilities that can come from those combinations.
There are 120 combinations of 5 items, which can be calculated using the formula nCr = n! / r!(n - r)!.
The number of combinations of 4 numbers that can be made from a set of 36 numbers without repeating any numbers is calculated using the combination formula. The formula for combinations is nCr = n! / r!(n-r)!, where n is the total number of options and r is the number of selections. In this case, n = 36 and r = 4. Therefore, the number of combinations is 36! / 4!(36-4)! = 36! / 4!32! = (36 x 35 x 34 x 33) / (4 x 3 x 2 x 1) = 58905 combinations.
To calculate the number of possible combinations from 10 items, you can use the formula for combinations, which is nCr = n! / r!(n-r)!. In this case, n is the total number of items (10) and r is the number of items you are choosing in each combination (which can range from 1 to 10). So, if you are considering all possible combinations (r=1 to 10), the total number of combinations would be 2^10, which is 1024.
Just use combinations formula. nCr, where n=44, r=6. Plug it into the calculator or use the formula, nCr = n!/[r!(n-r)!] And you should get 7059052 as the number of combinations.
If you have n objects and you are choosing r of them, then there are nCr combinations. This is equal to n!/( r! * (n-r)! ).