y = (sinx)^(e^x) ln(y) = ln((sinx)^(e^x)) ln(y) = (e^x)ln(sinx) (1/y)dy = (e^x)(1/sinx)(cosx)+ln(sinx)(e^x)dx (1/y)dy = (e^x)(cotx)+ln(sinx)(e^x)dx dy = ((sinx)^(e^x))((cotx)(e^x)+ln(sinx)(e^x))dx dy = ((e^x)(sinx)^(e^x))(cotx+ln(sinx))dx
√(1-sinx)=(1-sinx)1/2Chain rule: d/dx(ux)=x(u)x-1*d/dx(u)d/dx(1-sinx)1/2=(1/2)(1-sinx)1/2-1*d/dx(1-sinx)d/dx(1-sinx)1/2=(1/2)(1-sinx)-1/2*d/dx(1-sinx)-The derivative of 1-sinx is:d/dx(u-v)=du/dx-dv/dxd/dx(1-sinx)=d/dx(1)-d/dx(sinx)d/dx(1-sinx)1/2=(1/2)(1-sinx)-1/2*[d/dx(1)-d/dx(sinx)]-The derivative of 1 is 0 because it is a constant.-The derivative of sinx is:d/dx(sinu)=cos(u)*d/dx(u)d/dx(sinx)=cos(x)*d/dx(x)d/dx(1-sinx)1/2=(1/2)(1-sinx)-1/2*[0-(cos(x)*d/dx(x))]-The derivative of x is:d/dx(xn)=nxn-1d/dx(x)=1*x1-1d/dx(x)=1*x0d/dx(x)=1*(1)d/dx(x)=1d/dx(1-sinx)1/2=(1/2)(1-sinx)-1/2*[0-(cos(x)*1)]d/dx(1-sinx)1/2=(1/2)(1-sinx)-1/2*[0-(cos(x))]d/dx(1-sinx)1/2=(1/2)(1-sinx)-1/2*[-cos(x)]d/dx(1-sinx)1/2=(-cosx)/[2√(1-sinx)]
d/dx(sinx-cosx)=cosx--sinx=cosx+sinx
Using the Chain Rule :derivative of (sinx)2 = 2(sinx)1 * (derivative of sinx)d/dx (Sinx)2 = 2(sinx)1 * [d/dx (Sinx)]d/dx (Sinx)2 = 2(sinx) * (cosx)d/dx (Sinx)2 = 2 (sinx) * (cosx)d/dx (Sinx)2 = 2 sin(x) * cos(x)
d/dx(-cosx)=--sinx=sinx
y = (sinx)^(e^x) ln(y) = ln((sinx)^(e^x)) ln(y) = (e^x)ln(sinx) (1/y)dy = (e^x)(1/sinx)(cosx)+ln(sinx)(e^x)dx (1/y)dy = (e^x)(cotx)+ln(sinx)(e^x)dx dy = ((sinx)^(e^x))((cotx)(e^x)+ln(sinx)(e^x))dx dy = ((e^x)(sinx)^(e^x))(cotx+ln(sinx))dx
√(1-sinx)=(1-sinx)1/2Chain rule: d/dx(ux)=x(u)x-1*d/dx(u)d/dx(1-sinx)1/2=(1/2)(1-sinx)1/2-1*d/dx(1-sinx)d/dx(1-sinx)1/2=(1/2)(1-sinx)-1/2*d/dx(1-sinx)-The derivative of 1-sinx is:d/dx(u-v)=du/dx-dv/dxd/dx(1-sinx)=d/dx(1)-d/dx(sinx)d/dx(1-sinx)1/2=(1/2)(1-sinx)-1/2*[d/dx(1)-d/dx(sinx)]-The derivative of 1 is 0 because it is a constant.-The derivative of sinx is:d/dx(sinu)=cos(u)*d/dx(u)d/dx(sinx)=cos(x)*d/dx(x)d/dx(1-sinx)1/2=(1/2)(1-sinx)-1/2*[0-(cos(x)*d/dx(x))]-The derivative of x is:d/dx(xn)=nxn-1d/dx(x)=1*x1-1d/dx(x)=1*x0d/dx(x)=1*(1)d/dx(x)=1d/dx(1-sinx)1/2=(1/2)(1-sinx)-1/2*[0-(cos(x)*1)]d/dx(1-sinx)1/2=(1/2)(1-sinx)-1/2*[0-(cos(x))]d/dx(1-sinx)1/2=(1/2)(1-sinx)-1/2*[-cos(x)]d/dx(1-sinx)1/2=(-cosx)/[2√(1-sinx)]
d/dx(sinx-cosx)=cosx--sinx=cosx+sinx
Using the Chain Rule :derivative of (sinx)2 = 2(sinx)1 * (derivative of sinx)d/dx (Sinx)2 = 2(sinx)1 * [d/dx (Sinx)]d/dx (Sinx)2 = 2(sinx) * (cosx)d/dx (Sinx)2 = 2 (sinx) * (cosx)d/dx (Sinx)2 = 2 sin(x) * cos(x)
d/dx(-cosx)=--sinx=sinx
d/dx sinx = cosx
d/dx(cos x) = -sinx
= cos(x)-(cos3(x))/3 * * * * * Right numbers, wrong sign! Int(sin3x)dx = Int(sin2x*sinx)dx = Int[(1-cos2x)*sinx]dx = Int(sinx)dx + Int[-cos2x*sinx]dx Int(sinx)dx = -cosx . . . . . (I) Int[-cos2x*sinx]dx Let u = cosx, the du = -sinxdx so Int(u2)du = u3/3 = 1/3*cos3x . . . . (II) So Int(sin3x)dx = 1/3*cos3x - cosx + C Alternatively, using the multiple angle identities, you can show that sin3x = 1/4*[3sinx - sin3x] which gives Int(sin3x)dx = 1/4*{1/3*cos(3x) - 3cosx} + C
First, find the upper limit of integration by setting xsin(x)=0. It should be pi. Then use integration by parts to integrate xsin(x) from 0 to pi u=x dv=sinx dx du=dx v=-cosx evaluate the -xcosx+sinx from 0 to pi the answer is pi ps webassign sucks
d/dx cscx = d/dx 1/sinx = d/dx (sinx)-1= -(sinx)-2 cosx = -cosx/sin2x = -1/sinx.cosx/sinx = -cscx cotx I suggest you copy this out onto paper so it is more clear. The / signs make it harder to see what is happening compared to horizontal divide lines.
d/dx (-cscx-sinx)=cscxcotx-cosx
y=-3x*sinx-1.5x2+5x, when x=πy'=d/dx(-3x*sinx)-d/dx(1.5x2)+d/dx(5x)y'=(-3x*d/dx(sinx)+sinx*d/dx(-3x))-d/dx(1.5x2)+d/dx(5x)y'=(-3x*cosx+sinx(-3))-d/dx(1.5x2)+d/dx(5x)y'=(-3x*cosx-3sinx)-3x+5y'=-3x*cosx-3sinx-3x+5 is the derivative at any point of that equation, now you only have to plug in π for xy'(π)=-3π*cosπ-3sinπ-3π+5y'(π)=-3π*(-1)-3(0)-3π+5y'(π)=3π-3π+5y'(π)=5