P=q/r* * * * *The correct answer is P = k*q/r where k is the constant of proportionality.
If a is rational then there exist integers p and q such that a = p/q where q>0. Similarly, b = r/s for some integers r and s (s>0) Then a*b = p/q * r/s = (p*r)/(q*s) Now, since p, q r and s are integers, p*r and q*s are integers. Also, q and s > 0 means that q*s > 0 Thus a*b can be expressed as x/y where p and r are integers implies that x = p*r is an integer q and s are positive integers implies that y = q*s is a positive integer. That is, a*b is rational.
p = 50q/100 = 1/2 q r = 40q/100 = 2/5 q p = (1/2)/(2/5) = (1/2)(5/2) = 5/4 r or 1 1/4 r Thus, p is 125% of r.
p(q + r) = pq + pr is an example of the distributive property.
Prove: [ P -> Q AND R -> S AND (P OR R) ] -> (Q OR S) -> NOT, --- 1. P -> Q ___ hypothesis 2. R -> S ___ hypothesis 3. P OR R ___ hypothesis 4. ~P OR Q ___ implication from hyp 1. 5. ~R OR S ___ implication from hyp 2 6. ~P OR Q OR S ___ addition to 4. 7. ~R OR Q OR S ___ addition to 5. 8. Let T == (Q OR S) ___ substitution 9. (~P OR T) AND (~R OR T) ___ Conjunction 6,7 10. T OR (~P AND ~R) ___ Distribution from 9 11. T OR ~(P OR R) ___ De Morgan's theorem 12. Let M == (P OR R) ___ substitution 13. (T OR ~M) AND M ___ conjunction 11, hyp 3 From there, you can use distribution to get (T AND M) OR (~M AND M). The contradiction goes away leaving you with T AND M, which can simplify to T.
Converse: If p r then p q and q rContrapositive: If not p r then not (p q and q r) = If not p r then not p q or not q r Inverse: If not p q and q r then not p r = If not p q or not q r then not p r
Ifp < q and q < r, what is the relationship between the values p and r? ________________p
P=q/r* * * * *The correct answer is P = k*q/r where k is the constant of proportionality.
A rational number is a number of the form p/q where p and q are integers and q > 0.If p/q and r/s are two rational numbers thenp/q + r/s = (p*s + q*r) / (q*r)andp/q - r/s = (p*s - q*r) / (q*r)The answers may need simplification.
Two fractions are similar if they have the same denominator.So if p/r and q/r are two such fractions, then p/r + q/r = (p+q)/r.
A rational number is a number which can be expressed in the form p/q where p and q are integers and p>0.If p/q and r/s are two rational numbers then(p/q)*(r/s) = (p*r)/(q*s).You may need to check that this fraction is in its lowest (simplest) form.
p/q * r/s = (p*r)/(q*s)
a syllogism
It is 3*(q + p)/(r + s)
If a is rational then there exist integers p and q such that a = p/q where q>0. Similarly, b = r/s for some integers r and s (s>0) Then a*b = p/q * r/s = (p*r)/(q*s) Now, since p, q r and s are integers, p*r and q*s are integers. Also, q and s > 0 means that q*s > 0 Thus a*b can be expressed as x/y where p and r are integers implies that x = p*r is an integer q and s are positive integers implies that y = q*s is a positive integer. That is, a*b is rational.
P
The answer is Q.