tan x
P=q/r* * * * *The correct answer is P = k*q/r where k is the constant of proportionality.
If a is rational then there exist integers p and q such that a = p/q where q>0. Similarly, b = r/s for some integers r and s (s>0) Then a*b = p/q * r/s = (p*r)/(q*s) Now, since p, q r and s are integers, p*r and q*s are integers. Also, q and s > 0 means that q*s > 0 Thus a*b can be expressed as x/y where p and r are integers implies that x = p*r is an integer q and s are positive integers implies that y = q*s is a positive integer. That is, a*b is rational.
p = 50q/100 = 1/2 q r = 40q/100 = 2/5 q p = (1/2)/(2/5) = (1/2)(5/2) = 5/4 r or 1 1/4 r Thus, p is 125% of r.
p(q + r) = pq + pr is an example of the distributive property.
Prove: [ P -> Q AND R -> S AND (P OR R) ] -> (Q OR S) -> NOT, --- 1. P -> Q ___ hypothesis 2. R -> S ___ hypothesis 3. P OR R ___ hypothesis 4. ~P OR Q ___ implication from hyp 1. 5. ~R OR S ___ implication from hyp 2 6. ~P OR Q OR S ___ addition to 4. 7. ~R OR Q OR S ___ addition to 5. 8. Let T == (Q OR S) ___ substitution 9. (~P OR T) AND (~R OR T) ___ Conjunction 6,7 10. T OR (~P AND ~R) ___ Distribution from 9 11. T OR ~(P OR R) ___ De Morgan's theorem 12. Let M == (P OR R) ___ substitution 13. (T OR ~M) AND M ___ conjunction 11, hyp 3 From there, you can use distribution to get (T AND M) OR (~M AND M). The contradiction goes away leaving you with T AND M, which can simplify to T.
Converse: If p r then p q and q rContrapositive: If not p r then not (p q and q r) = If not p r then not p q or not q r Inverse: If not p q and q r then not p r = If not p q or not q r then not p r
Ifp < q and q < r, what is the relationship between the values p and r? ________________p
If P is 50% of Q, this means that P is half the value of Q. Similarly, if Q is 50% of R, then Q is half the value of R. Therefore, P is 25% of R, as it is 50% of Q, which is itself 50% of R. Thus, we can conclude that P is less than both Q and R.
The statement "P and Q implies not not P or R if and only if Q" can be expressed in logical terms as ( (P \land Q) \implies (\neg \neg P \lor R) \iff Q ). This can be simplified, as (\neg \neg P) is equivalent to (P), leading to ( (P \land Q) \implies (P \lor R) \iff Q ). The implication essentially states that if both (P) and (Q) are true, then either (P) or (R) must also hold true, and this equivalence holds true only if (Q) is true. The overall expression reflects a relationship between the truth values of (P), (Q), and (R).
P=q/r* * * * *The correct answer is P = k*q/r where k is the constant of proportionality.
A rational number is a number of the form p/q where p and q are integers and q > 0.If p/q and r/s are two rational numbers thenp/q + r/s = (p*s + q*r) / (q*r)andp/q - r/s = (p*s - q*r) / (q*r)The answers may need simplification.
Two fractions are similar if they have the same denominator.So if p/r and q/r are two such fractions, then p/r + q/r = (p+q)/r.
A rational number is a number which can be expressed in the form p/q where p and q are integers and p>0.If p/q and r/s are two rational numbers then(p/q)*(r/s) = (p*r)/(q*s).You may need to check that this fraction is in its lowest (simplest) form.
p/q * r/s = (p*r)/(q*s)
P
a syllogism
It is 3*(q + p)/(r + s)