The gradient of the tangents to the curve.
Chat with our AI personalities
The slope of a curved line changes as you go along the curve and so you may have a different slope at each point. Any any particular point, the slope of the curve is the slope of the straight line which is tangent to the curve at that point. If you know differential calculus, the slope of a curved line at a point is the value of the first derivative of the equation of the curve at that point. (Actually, even if you don't know differential calculus, the slope is still the value of the function's first derivative at that point.)
The derivative of x3-2x+5 is 3x2- 2. This is its slope at a point x,y.
Well if you are talking about calculus, integration is the anti-derivative. So as my teacher explained to us, instead of going down, you will go up. For example if you have the F(x) = 2x, the F'(x) = 2. F'(x) is the derivative here, so you will do the anti of a derivative. So with the same F(x) = 2x the integral, is SF(x) = 1/3x^3. The Integral will find you the area under the curve.
There are two main definitions. One defines the integral of a function as an "antiderivative", that is, the opposite of the derivative of a function. The other definition refers to an integral of a function as being the area under the curve for that function.
All it means to take the second derivative is to take the derivative of a function twice. For example, say you start with the function y=x2+2x The first derivative would be 2x+2 But when you take the derivative the first derivative you get the second derivative which would be 2