answersLogoWhite

0

There are infinitely many such parabolas, four possibilities are:

y = x² - 3

y = 5 - x²

x = y² - 3

x = -1 - y²

Given the focus as well would give an exact equation

User Avatar

Wiki User

9y ago

What else can I help you with?

Related Questions

The vertex of the parabola below is at the point 4 -1 which equation be this parabola's equation?

5


What is the equation of a parabola with the vertex of 2 -1?

3


The vertex of the parabola below is at the point -2 1 Which of the equations below could be this parabolas equation?

Go study


The vertex of this parabola is at 5 5 When the x-value is 6 the y-value is -1 What is the coefficient of the squared expression in the parabola's equation?

The vertex of this parabola is at 5 5 When the x-value is 6 the y-value is -1. The coefficient of the squared expression in the parabola's equation is -6.


What could be the equation of a parabola with its vertex at (-36).?

The equation of a parabola with its vertex at the point (-36, k) can be expressed in the vertex form as ( y = a(x + 36)^2 + k ), where ( a ) determines the direction and width of the parabola. If the vertex is at (-36), the x-coordinate is fixed, but the y-coordinate ( k ) can vary depending on the specific position of the vertex. If you'd like a specific example, assuming ( k = 0 ) and ( a = 1 ), the equation would be ( y = (x + 36)^2 ).


The vertex of this parabola is at 3 1 When the y-value is 0 the x-value is 4 What is the coefficient of the squared term in the parabolas equation?

To find the coefficient of the squared term in the parabola's equation, we can use the vertex form of a parabola, which is (y = a(x - h)^2 + k), where ((h, k)) is the vertex. Given the vertex at (3, 1), the equation starts as (y = a(x - 3)^2 + 1). Since the parabola passes through the point (4, 0), we can substitute these values into the equation: (0 = a(4 - 3)^2 + 1), resulting in (0 = a(1) + 1). Solving for (a), we find (a = -1). Thus, the coefficient of the squared term is (-1).


A parabola has a vertex at -3 -2 what is its equation?

-1


What is the equation for the parabola with the vertex -3.0 that passes through the point 318?

To find the equation of a parabola with vertex at ((-3, 0)) that passes through the point ((3, 18)), we can use the vertex form of a parabola, (y = a(x + 3)^2). To determine the value of (a), substitute the point ((3, 18)) into the equation: [ 18 = a(3 + 3)^2 \implies 18 = a(6)^2 \implies 18 = 36a \implies a = \frac{1}{2}. ] Thus, the equation of the parabola is (y = \frac{1}{2}(x + 3)^2).


What is the standard equation for vertex at origin opens down 1 and 76 units between the vertex and focus?

Since the vertex is at the origin and the parabola opens downward, the equation of the parabola is x2 = 4py, where p < 0, and the axis of symmetry is the y-axis. So the focus is at y-axis at (0, p) and the directrix equation is y = -p. Now, what do you mean with 1 and 76 units? 1.76 units? If the distance of the vertex and the focus is 1.76 units, then p = -1.76, thus 4p = -7.04, then the equation of the parabola is x2 = -7.04y.


The vertex of this parabola is at -3 -1 When the y-value is 0 the x-value is 4 What is the coefficient of the squared term in the parabolas equation?

The vertex of this parabola is at -3 -1 When the y-value is 0 the x-value is 4. The coefficient of the squared term in the parabolas equation is 7


The vertex of this parabola is at (-3 -1). When the y-value is 0 the x-value is 4. What is the coefficient of the squared term in the parabola's equation?

To find the coefficient of the squared term in the parabola's equation, we can use the vertex form of a parabola, which is (y = a(x - h)^2 + k), where ((h, k)) is the vertex. Here, the vertex is ((-3, -1)), so the equation becomes (y = a(x + 3)^2 - 1). Given that when (y = 0), (x = 4), we can substitute these values into the equation to find (a): [0 = a(4 + 3)^2 - 1 \implies 0 = a(7^2) - 1 \implies 1 = 49a \implies a = \frac{1}{49}.] Thus, the coefficient of the squared term is (\frac{1}{49}).


What is the coefficient of the squared term in the parabola's equation when the vertex is at 2 -1 and the point 5 0 is on it?

A parabola with vertex (h, k) has equation of the form: y = a(x - h)² + k → vertex (k, h) = (2, -1), and a point on it is (5, 0) → 0 = a(5 - 2)² + -1 → 0 = a(3)² -1 → 1 = 9a → a = 1/9 → The coefficient of the x² term is 1/9