d/dx(sinx-cosx)=cosx--sinx=cosx+sinx
you need this identities to solve the problem..that is something you have to memorized sec x= 1/cosx 1-cos2x= sin2x tanx= sin x/cosx also, sin 2x= (sinx)(sinx) sec x - cosx= sin x tanx (1/cosx)-cosx= sin x tanx .. 1-cos2x / cosx=sin x tanx sin2x/ cosx= sin x tanx (sin x/cox)( sin x)= sin x tanx tanx sinx= sin x tanx
secx is the inverse of cosx. secx=1/cosx. A secant is also a line drawn through the graph that touches two points on a function.
2cos2x - cosx -1 = 0 Factor: (2cosx + 1)(cosx - 1) = 0 cosx = {-.5, 1} x = {...0, 120, 240, 360,...} degrees
Evaluate the integral? Use integration by parts. uv - int v du u = e^x du = e^x dv = sinx v = -cosx int e^x sinx dx -e^x cosX - int -cosx e^x -e^x cosx + sinx e^x + C ----------------------------------
to simplify Cosx=Sinx Tanx you should remember your fundamental and pythagorean identities.. Cosx + Sinx Tanx Cosx + Sinx (Sinx/Cosx) <---------- From Tanx= Sinx/Cosx Cosx + Sin2x/ Cos x <------------- do the LCD Cosx (Cosx/Cosx) + Sin2x/Cosx (Cos2x+Sin2x)/Cosx 1/Cosx <--------- From Sin2x + Cos2x =1 or Secx <-------- answer Comment if you have questions...:))
2
(1-cosx)/sinx + sinx/(1- cosx) = [(1 - cosx)*(1 - cosx) + sinx*sinx]/[sinx*(1-cosx)] = [1 - 2cosx + cos2x + sin2x]/[sinx*(1-cosx)] = [2 - 2cosx]/[sinx*(1-cosx)] = [2*(1-cosx)]/[sinx*(1-cosx)] = 2/sinx = 2cosecx
From the Pythagorean identity, sin2x = 1-cos2x. LHS = 1/(sinx cosx) - cosx/sinx LHS = 1/(sinx cosx) - (cosx/sinx)(cosx/cosx) LHS = 1/(sinx cosx) - cos2x/(sinx cosx) LHS = (1- cos2x)/(sinx cosx) LHS = sin2x /(sinx cosx) [from Pythagorean identity] LHS = sin2x /(sinx cosx) LHS = sinx/cosx LHS = tanx [by definition] RHS = tanx LHS = RHS and so the identity is proven. Q.E.D.
Use this identity sin2x+cos2x=1 sin2x=1-cos2x so sin2x/(1-cosx) =(1-cos2x)/(1-cosx) =(1-cosx)(1+cosx)/(1-cosx) =1+cosx
at the angles 0 and 360 degrees, or 0 and 2pi
d/dx(sinx-cosx)=cosx--sinx=cosx+sinx
sinx*secx ( secx= 1/cos ) sinx*(1/cosx) sinx/cosx=tanx tanx=tanx
secx = 1/cosxand 1/cotx = tanx, therefore1/cosx + tanx = 1 + sinx/cosx, andsin/cos = tanx, therefore1/cosx + tanx = 1 + tanx, therefore1/cosx = 1, therfore1 = cosx.So, therfore, it is not neccesarily true.But if you meansecx plus 1 divided by cotx equals (1 plus sinx) divided by cosx(this is probably what you mean) Let's start over!secx = 1/cosxand 1/cotx = tanx, therefore1/cosx + tanx = (1+sinx)/cosx therefore1/cosx + tanx = 1/cosx + sinx/cosxsinx/cosx = tanx therfore1/cosx + tanx = 1/cosx + tanxDo you think this is correct? Subtract both sides by 1/cosx + tanx:0 = 0So, therefore, this is correct!(BTW, I'm in Grade 6! :P)
(1+cosx)(1-cosx)= 1 +cosx - cosx -cos^2x (where ^2 means squared) = 1-cos^2x = sin^2x (sin squared x)
cos2x/cosx = 2cosx - 1/cosx
2sinxcosx-cosx=0 Factored : cosx(2sinx-1)=0 2 solutions: cosx=0 or sinx=.5 For cosx=0, x=90 or 270 degrees For sinx=.5, x=30 degrees x = {30, 90, 270}