The integral of 3x is ln(3)*3x. Take the natural log of the base and multiply it by the base raised to the power.
This integral cannot be performed analytically. Ony when the integral is taken from 0 to infinity can it be computed by squaring the integral and applying a change of variable (switching to polar coordinates). if desired I could show how to do this.
better place to ask would be yahoo answers
Integral of [1/(sin x cos x) dx] (substitute sin2 x + cos2 x for 1)= Integral of [(sin2 x + cos2 x)/(sin x cos x) dx]= Integral of [sin2 x/(sin x cos x) dx] + Integral of [cos2 x/(sin x cos x) dx]= Integral of (sin x/cos x dx) + Integral of (cos x/sin x dx)= Integral of tan x dx + Integral of cot x dx= ln |sec x| + ln |sin x| + C
The integral of X 4Y X 8Y 2 With respect to X is 2ln(10/9).
maths signs
The integral of 3x is ln(3)*3x. Take the natural log of the base and multiply it by the base raised to the power.
(e^x)^8 can be written as e^(8*x), so the integral of e^(8*x) = (e^(8*x))/8 or e8x/ 8, then of course you have to add a constant, C.
Using information from the Wolframalpha site. It seems that this integral can't be expressed as a finite amount of standard functions; you can go to the Wolfram Alpha site, and type "integral x^x", to get a series expansion if you are interested.
The integral would be 10e(1/10)x+c
This integral cannot be performed analytically. Ony when the integral is taken from 0 to infinity can it be computed by squaring the integral and applying a change of variable (switching to polar coordinates). if desired I could show how to do this.
replace square root o x with t.
better place to ask would be yahoo answers
I will assume that this is sopposed to be integrated with respect to x. To make this problem easier, imagine that the integrand is x raised to the negative 3. The integral is 1/(-2x-2) plus some constant c.
(ex)3=e3x, so int[(ex)3dx]=int[e3xdx]=e3x/3 the integral ex^3 involves a complex function useful only to integrations such as this known as the exponential integral, or En(x). The integral is:-(1/3)x*E2/3(-x3). To solve this integral, and for more information on the exponential integral, go to http://integrals.wolfram.com/index.jsp?expr=e^(x^3)&random=false
Integral of [1/(sin x cos x) dx] (substitute sin2 x + cos2 x for 1)= Integral of [(sin2 x + cos2 x)/(sin x cos x) dx]= Integral of [sin2 x/(sin x cos x) dx] + Integral of [cos2 x/(sin x cos x) dx]= Integral of (sin x/cos x dx) + Integral of (cos x/sin x dx)= Integral of tan x dx + Integral of cot x dx= ln |sec x| + ln |sin x| + C
A primitive to e^(x^(1/3)) is (e^(x^(1/3)))*(6-6x^(1/3)+3x^(2/3))