answersLogoWhite

0


Best Answer

s

User Avatar

Wiki User

12y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What is the Laplace transform of doublet function?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Other Math

What is the Laplace transform of the signum function?

2/s


What are the limitations of laplace transform?

Laplace will only generate an exact answer if initial conditions are provided


What is the laplace transform of log function?

The Laplace transform is a widely used integral transform in mathematics with many applications in physics and engineering. It is a linear operator of a function f(t) with a real argument t (t ≥ 0) that transforms f(t) to a function F(s) with complex argument s, given by the integral F(s) = \int_0^\infty f(t) e^{-st}\,dt.


What was the Laplace transform of sin2 3t?

the Laplace transform of sin2 3thttp://www7.0zz0.com/2009/12/30/19/748450027.gif


What is Laplace transform?

A Laplace transform is a mathematical operator that is used to solve differential equations. This operator is also used to transform waveform functions from the time domain to the frequency domain and can simplify the study of such functions. For continuous functions, f(t), the Laplace transform, F(s), is defined as the Integral from 0 to infinity of f(t)*e-stdt. When this definition is used it can be shown that the Laplace transform, Fn(s) of the nth derivative of a function, fn(t), is given by the following generic formula:Fn(s)=snF(s) - sn-1f0(0) - sn-2f1(0) - sn-3f2(0) - sn-4f3(0) - sn-5f4(0). . . . . - sn-nfn-1(0)Thus, by taking the Laplace transform of an entire differential equation you can eliminate the derivatives of functions with respect to t in the equation replacing them with a Laplace transform operator, and simple initial condition constants, fn(0), times a new variable s raised to some power. In this manner the differential equation is transformed into an algebraic equation with an F(s) term. After solving this new algebraic equation for F(s) you can take the inverse Laplace transform of the entire equation. Since the inverse Laplace transform of F(s) is f(t) you are left with the solution to the original differential equation.

Related questions

What are the Laplace transform of unit doublet function?

The Laplace transform of the unit doublet function is 1.


What is the difference between Fourier transform and Laplace transform and z transform?

Fourier transform and Laplace transform are similar. Laplace transforms map a function to a new function on the complex plane, while Fourier maps a function to a new function on the real line. You can view Fourier as the Laplace transform on the circle, that is |z|=1. z transform is the discrete version of Laplace transform.


What is relation between laplace transform and fourier transform?

The Laplace transform is related to the Fourier transform, but whereas the Fourier transform expresses a function or signal as a series of modes ofvibration (frequencies), the Laplace transform resolves a function into its moments. Like the Fourier transform, the Laplace transform is used for solving differential and integral equations.


Can a discontinuous function have a laplace transform?

Sure! The definition of Laplace transform involves the integral of a function, which always makes discontinuous continuous.


Does every continious function has laplace transform?

There are continuous functions, for example f(t) = e^{t^2}, for which the integral defining the Laplace transform does not converge for any value of the Laplace variable s. So you could say that this continuous function does not have a Laplace transform.


What is the Laplace transform of the signum function?

2/s


What is the laplace transform of a unit step function?

a pulse (dirac's delta).


What are the limitations of laplace transform?

Laplace will only generate an exact answer if initial conditions are provided


The Laplace transform of sin3t?

find Laplace transform? f(t)=sin3t


What is the difference between the fourier laplace transform?

They are similar. In many problems, both methods can be used. You can view Fourier transform is the Laplace transform on the circle, that is |z|=1. When you do Fourier transform, you don't need to worry about the convergence region. However, you need to find the convergence region for each Laplace transform. The discrete version of Fourier transform is discrete Fourier transform, and the discrete version of Laplace transform is Z-transform.


What kind of response is given by laplace transform analysis?

The type of response given by Laplace transform analysis is the frequency response.


Derivation for transient current by using series rlc circuit?

the most convenient solution is to use the laplace transform, connecting it in series makes a current loop in kvl, where the summation of e (the supply) equals the voltage in resistor, inductor and capaitor,, using differential ang integral, we can create a formula of function... to simplify use the laplace transform, then inverse laplace transform... after the action completed, you will now have a pronounced equation for current as a function of time