12x-14w+103y+72+16-56+0-65+2w+0 original = 12x-14w+2w+103y+72+16-56+0-65+0 group = 12x-12w+103y-33 answer
3w - 2 = 2w + 3 Add 2 to both sides: 3w = 2w + 5 Subtract 2w from both sides: w = 5
w=10
Using basic algebra we can solve this problem. First we need to write out the problem:5-32+2w = -7-27+2w = -72w = 20w = 10
2w
2w + 16 = - 6w - 8 2w + 16 + 6w = - 8 8w + 16 = - 8 8w = - 8 - 16 8w = - 24 w = - 3
what is w if 2w = 16
-2w+14+10w=348w=20w=2.5
12x-14w+103y+72+16-56+0-65+2w+0 original = 12x-14w+2w+103y+72+16-56+0-65+0 group = 12x-12w+103y-33 answer
x = (P - 2W) / 2
5w+2 = 2w+5 5w-2w = 5-2 3w = 3 w = 1
3w - 2 = 2w + 3 Add 2 to both sides: 3w = 2w + 5 Subtract 2w from both sides: w = 5
w=4
-36 + 2w = -8w + w -36 + 2w = -7w -36 = -7w - 2w -36 = -9w w = -36/-9 = 4
w=10
W/3 + 2W/3 is one possible answer.
a = L x W: area equals length times the width. p = 2L + 2W: perimeter equals 2 times the length plus 2 times the width so L = (p - 2W)/2