.5(x-sin(x)cos(x))+c
sin cubed + cos cubed (sin + cos)( sin squared - sin.cos + cos squared) (sin + cos)(1 + sin.cos)
Integral of [1/(sin x cos x) dx] (substitute sin2 x + cos2 x for 1)= Integral of [(sin2 x + cos2 x)/(sin x cos x) dx]= Integral of [sin2 x/(sin x cos x) dx] + Integral of [cos2 x/(sin x cos x) dx]= Integral of (sin x/cos x dx) + Integral of (cos x/sin x dx)= Integral of tan x dx + Integral of cot x dx= ln |sec x| + ln |sin x| + C
22
Note that an angle should always be specified - for example, 1 - cos square x. Due to the Pythagorean formula, this can be simplified as sin square x. Note that sin square x is a shortcut of (sin x) squared.
sin integral is -cos This is so because the derivative of cos x = -sin x
.5(x-sin(x)cos(x))+c
sin cubed + cos cubed (sin + cos)( sin squared - sin.cos + cos squared) (sin + cos)(1 + sin.cos)
Multiply both sides by sin(1-cos) and you lose the denominators and get (sin squared) minus 1+cos times 1-cos. Then multiply out (i.e. expand) 1+cos times 1-cos, which will of course give the difference of two squares: 1 - (cos squared). (because the cross terms cancel out.) (This is diff of 2 squares because 1 is the square of 1.) And so you get (sin squared) - (1 - (cos squared)) = (sin squared) + (cos squared) - 1. Then from basic trig we know that (sin squared) + (cos squared) = 1, so this is 0.
The answer is 1. sin^2 x cos^2/sin^2 x 1/cos^2 cos^2 will be cancelled =1 sin^2 also will be cancelled=1 1/1 = 1
Sin squared, cos squared...you removed the x in the equation.
Integral of [1/(sin x cos x) dx] (substitute sin2 x + cos2 x for 1)= Integral of [(sin2 x + cos2 x)/(sin x cos x) dx]= Integral of [sin2 x/(sin x cos x) dx] + Integral of [cos2 x/(sin x cos x) dx]= Integral of (sin x/cos x dx) + Integral of (cos x/sin x dx)= Integral of tan x dx + Integral of cot x dx= ln |sec x| + ln |sin x| + C
Sin squared is equal to 1 - cos squared.
(1/8)(x-sin 4x)
sin squared
2
-cos x + Constant