an^3 bn^2+cn+d=E(n) where E(n) is the value of the nth term and a,b, c and d are constants. So we have:
a+b+c+d=1
8a+4b+2c+d=0
27a+9b+3c+d=3
64a+16b+4c+d=8
Then work it out from there.
Assuming the first term was supposed to be -1 (minus 1) not 1 (plus one), then the nth term is given by:
tn = n2 - 2n
The nth term of the sequence is 2n + 1.
Each number in this sequence is twice the previous number. The nth. term is 2n-1.Each number in this sequence is twice the previous number. The nth. term is 2n-1.Each number in this sequence is twice the previous number. The nth. term is 2n-1.Each number in this sequence is twice the previous number. The nth. term is 2n-1.
To find the nth term of a sequence, we first need to identify the pattern or rule that governs the sequence. In this case, the sequence is decreasing by 6 each time. Therefore, the nth term can be represented by the formula: 18 - 6(n-1), where n is the position of the term in the sequence.
The given sequence is an arithmetic sequence with a common difference of 5. To find the nth term of an arithmetic sequence, we use the formula: (a_n = a_1 + (n-1)d), where (a_n) is the nth term, (a_1) is the first term, (n) is the term number, and (d) is the common difference. In this case, the first term (a_1 = 0) and the common difference (d = 5). Therefore, the nth term of the sequence is (a_n = 0 + (n-1)5 = 5n - 5).
The nth term is: 5-6n
To find the nth term of a sequence, we first need to identify the pattern or rule governing the sequence. In this case, the sequence appears to be increasing by 9, then 13, then 17, and so on. This pattern indicates that the nth term is given by the formula n^2 + n - 1. So, the nth term of the sequence 0, 9, 22, 39, 60 is n^2 + n - 1.
The nth term of the sequence is 2n + 1.
Each number in this sequence is twice the previous number. The nth. term is 2n-1.Each number in this sequence is twice the previous number. The nth. term is 2n-1.Each number in this sequence is twice the previous number. The nth. term is 2n-1.Each number in this sequence is twice the previous number. The nth. term is 2n-1.
To find the nth term of a sequence, we first need to identify the pattern or rule that governs the sequence. In this case, the sequence is decreasing by 6 each time. Therefore, the nth term can be represented by the formula: 18 - 6(n-1), where n is the position of the term in the sequence.
The given sequence is an arithmetic sequence with a common difference of 5. To find the nth term of an arithmetic sequence, we use the formula: (a_n = a_1 + (n-1)d), where (a_n) is the nth term, (a_1) is the first term, (n) is the term number, and (d) is the common difference. In this case, the first term (a_1 = 0) and the common difference (d = 5). Therefore, the nth term of the sequence is (a_n = 0 + (n-1)5 = 5n - 5).
The given sequence is an arithmetic sequence with a common difference of 6. To find the nth term of this sequence, we can use the following formula: nth term = first term + (n - 1) x common difference where n is the position of the term we want to find. In this sequence, the first term is 1 and the common difference is 6. Substituting these values into the formula, we get: nth term = 1 + (n - 1) x 6 nth term = 1 + 6n - 6 nth term = 6n - 5 Therefore, the nth term of the sequence 1, 7, 13, 19 is given by the formula 6n - 5.
7 - 4n where n denotes the nth term and n starting with 0
It is: nth term = 29-7n
It is: nth term = 35-9n
This is the Fibonacci sequence, where the number is the sum of the two preceding numbers. The nth term is the (n-1)th term added to (n-2)th term
The given sequence is 11, 31, 51, 72 The nth term of this sequence can be expressed as an = 11 + (n - 1) × 20 Therefore, the nth term is 11 + (n - 1) × 20, where n is the position of the term in the sequence.
The nth term is: 5-6n