The nth term of the sequence is (n + 1)2 + 2.
2n +29
It is: 27-2n
ans=102 HOW? 6,11,13,27,38,.... 6(+5),11(+7),13(+9),27(+11),38(+13),51(+15),66(+17),83(+19),102adding 5 to 6 gives 11 adding 7(two greater than previous one) gives 13...and so on... to find the nth term N squared +2
The given sequence is an arithmetic sequence with a common difference that increases by 1 with each term. To find the nth term of an arithmetic sequence, you can use the formula: nth term = a + (n-1)d, where a is the first term, n is the term number, and d is the common difference. In this case, the first term (a) is 3 and the common difference (d) is increasing by 1, so the nth term would be 3 + (n-1)(n-1) = n^2 + 2.
The nth term of the sequence is (n + 1)2 + 2.
2n +29
There are many possible answers, but the simplest is t(n) = 27 - 8*n where n = 1, 2, 3, ...
It is: 27-2n
5 to 7 is 27 to 17 is 1017 to 19 is 219 to 29 is 1029 to 31 is 2there fore following the pattern the nth term is 4131 to 41 is 10
ans=102 HOW? 6,11,13,27,38,.... 6(+5),11(+7),13(+9),27(+11),38(+13),51(+15),66(+17),83(+19),102adding 5 to 6 gives 11 adding 7(two greater than previous one) gives 13...and so on... to find the nth term N squared +2
The given sequence is an arithmetic sequence with a common difference that increases by 1 with each term. To find the nth term of an arithmetic sequence, you can use the formula: nth term = a + (n-1)d, where a is the first term, n is the term number, and d is the common difference. In this case, the first term (a) is 3 and the common difference (d) is increasing by 1, so the nth term would be 3 + (n-1)(n-1) = n^2 + 2.
To find the nth term of this sequence, we first need to determine the pattern or rule governing the sequence. By examining the differences between consecutive terms, we can see that the sequence is increasing by 9, 15, 21, 27, and so on. This indicates that the nth term is given by the formula n^2 + 1.
n3
5n+2
Willies
a (sub n) = 35 - (n - 1) x d