y = -5tan(x) can also be written y/(-5) = tan(x). In other words, the -5 just changes the y values and the orientation of the graph (it flips tan(x) over the y axis and stretches the graph up and down).
So -5tan(x), like tan(x), has a period of pi. This is because tan is the y value divided by the x value at any given point on the unit circle. At 0 degrees, x is at one and y is at zero, so tan0o = 0. As we travel counterclockwise around the unit circle, tan is next equal to zero when x is equal to zero. This occurs halfway around the circle at 180o, or (in radians) pi.
To solve for tan x degree 90 you do a few things. First, if x equals 90, then this equals 1.5597 radian or 89.36 degrees. This is the easiest way to solve tan x degree 90.
sec(x)tan(x)
You find the smallest positive value y such that tan(x + y) = tan(x) for all x.
First: note 3 things about cot and tan, and note the given statement:cot = 1/tantan is cyclic with a period of π, that is tan(nπ + x) = tan(x)tan is an odd function, that is tan(-x) = -tan(x)tan(π/4) = 1Now apply them to the problem:cot(π - π/4) = 1/tan(π - π/4)= 1/tan(-π/4)= 1/-tan(π/4)= 1/-1 = -1Thus:cot(π - π/4) = -1.
22
x = tan-1(5) = 78.69 degrees
5/8 = tan(x) x = tan-1(5/8) = tan-1(0.625) = 0.558599 + k*pi radians or 32.00538 + k*180 degrees where k is an integer
The period of the tangent function is PI. The period of y= tan(2x) is PI over the coefficient of x = PI/2
No. Tan(x)=Sin(x)/Cos(x) Sin(x)Tan(x)=Sin2(x)/Cos(x) Cos(x)Tan(x)=Sin(x)
The period of the function y= tan(x) is pie The periods of the functions y= cos(x) and y= sin(x) is 2pie
The period of the function y= tan(x) is pie The periods of the functions y= cos(x) and y= sin(x) is 2pie
When x = 3.806663, tan(e^x) = 1.
To solve for tan x degree 90 you do a few things. First, if x equals 90, then this equals 1.5597 radian or 89.36 degrees. This is the easiest way to solve tan x degree 90.
sec(x)tan(x)
tanx = 5x = tan-1(5) = arctan5x ~ 78.69
tan0.15
It is NOT equal. Try calculating tan x, and tan 6x, for a few values of "x", on your scientific calculator. Perhaps you are supposed to solve an equation, and see FOR WHAT values of "x" the two are equal?