9
Substitute the values of the variables into the inequality. If the inequality is true then they are a solution, if not, they are not.Substitute the values of the variables into the inequality. If the inequality is true then they are a solution, if not, they are not.Substitute the values of the variables into the inequality. If the inequality is true then they are a solution, if not, they are not.Substitute the values of the variables into the inequality. If the inequality is true then they are a solution, if not, they are not.
What is the product of place values of 8 in '12868
If you use a variable, or variables, with an equation, or with an inequality, it is neither true nor false until you replace the variables with specific values.
that would be limited to 3 and -3 for values of x
6, 5, 4
Which inequality represents all values of x for which the quotient below is defined?square root of 28(x-1) divided by square root of 8x^2
Substitute the values of the variables into the inequality. If the inequality is true then they are a solution, if not, they are not.Substitute the values of the variables into the inequality. If the inequality is true then they are a solution, if not, they are not.Substitute the values of the variables into the inequality. If the inequality is true then they are a solution, if not, they are not.Substitute the values of the variables into the inequality. If the inequality is true then they are a solution, if not, they are not.
To determine the inequality that represents a graph, you need to analyze its features, such as the shaded region and the boundary line. If the boundary line is solid, the inequality includes "≤" or "≥," while a dashed line indicates "<" or ">". The shaded region shows where the values satisfy the inequality. By identifying the slope and y-intercept of the line, you can formulate the correct inequality.
a solution of inequality
To find the values of ( n ) for which the product ( 3n ) is less than 50, we can set up the inequality ( 3n < 50 ). Dividing both sides by 3 gives ( n < \frac{50}{3} ), which simplifies to ( n < 16.67 ). Therefore, the integer values of ( n ) that satisfy this inequality are ( n = 0, 1, 2, \ldots, 16 ).
The acronym VBBN represents Values, Beliefs, Behaviors, and Norms.
The graph of the inequality ( x < 4.5 ) is a vertical line drawn at ( x = 4.5 ), with a dashed line indicating that the line itself is not included in the solution set. The region to the left of this line represents all the values of ( x ) that satisfy the inequality. Therefore, the area shaded will extend infinitely to the left, indicating that all ( x ) values less than 4.5 are solutions.
The shaded region above or below the line in the graph of a linear inequality is called the solution region. This region represents all the possible values that satisfy the inequality. Points within the shaded region are solutions to the inequality, while points outside the shaded region are not solutions.
To solve the inequality (8x^2 - x < 0), we first factor it as (x(8x - 1) < 0). The critical points are (x = 0) and (x = \frac{1}{8}). Analyzing the sign of the product in the intervals determined by these points, we find that the inequality holds for (0 < x < \frac{1}{8}). Since there are no integer values of (x) in this interval, the number of different integer values of (x) that satisfy the inequality is zero.
Inequality
An inequality
Find the possible values of r in the inequality 5 > r - 3.Answer: r < 8