0
The equation cannot be proved because of the scattered parts.
'csc' = 1/sin'tan' = sin/cosSo it must follow that(cos) (csc) / (tan) = (cos) (1/sin)/(sin/cos) = (cos) (1/sin) (cos/sin) = (cos/sin)2
The identity for tan(theta) is sin(theta)/cos(theta).
The expression "cot theta = 1.5 sin theta" can be rewritten using the definitions of trigonometric functions. Since cotangent is the reciprocal of tangent, we have cot(theta) = cos(theta) / sin(theta). Therefore, the equation becomes cos(theta) / sin(theta) = 1.5 sin(theta), leading to cos(theta) = 1.5 sin^2(theta). This relationship can be used to find specific values of theta that satisfy the equation.
The fourth Across the quadrants sin theta and cos theta vary: sin theta: + + - - cos theta: + - - + So for sin theta < 0, it's the third or fourth quadrant And for cos theta > 0 , it's the first or fourth quadrant. So for sin theta < 0 and cos theta > 0 it's the fourth quadrant
The equation cannot be proved because of the scattered parts.
Remember that tan = sin/cos. So your expression is sin/cos times cos. That's sin(theta).
'csc' = 1/sin'tan' = sin/cosSo it must follow that(cos) (csc) / (tan) = (cos) (1/sin)/(sin/cos) = (cos) (1/sin) (cos/sin) = (cos/sin)2
(Sin theta + cos theta)^n= sin n theta + cos n theta
The identity for tan(theta) is sin(theta)/cos(theta).
It's 1/2 of sin(2 theta) .
The expression "cot theta = 1.5 sin theta" can be rewritten using the definitions of trigonometric functions. Since cotangent is the reciprocal of tangent, we have cot(theta) = cos(theta) / sin(theta). Therefore, the equation becomes cos(theta) / sin(theta) = 1.5 sin(theta), leading to cos(theta) = 1.5 sin^2(theta). This relationship can be used to find specific values of theta that satisfy the equation.
The fourth Across the quadrants sin theta and cos theta vary: sin theta: + + - - cos theta: + - - + So for sin theta < 0, it's the third or fourth quadrant And for cos theta > 0 , it's the first or fourth quadrant. So for sin theta < 0 and cos theta > 0 it's the fourth quadrant
You can use the Pythagorean identity to solve this:(sin theta) squared + (cos theta) squared = 1.
because sin(2x) = 2sin(x)cos(x)
The derivative of (sin (theta))^.5 is (cos(theta))/(2sin(theta))
Let 'theta' = A [as 'A' is easier to type] sec A - 1/(sec A) = 1/(cos A) - cos A = (1 - cos^2 A)/(cos A) = (sin^2 A)/(cos A) = (tan A)*(sin A) Then you can swap back the 'A' with theta