8
Points: (3,-4) and (-1, -2) Midpoint: (1,-3) Slope: -1/2 Perpendicular slope: 2 Perpendicular bisector equation in slope intercept form: y = 2x-5
Points: (7, 7) and (3, 5) Midpoint: (5, 6) Slope: 1/2 Perpendicular slope: -2 Use: y-6 = -2(x-5) Perpendicular bisector equation: y = -2x+16 or as 2x+y-16 = 0
Known equation: 5x -2y = 3 or y = 5/2x -3/2 Slope of equation: 5/2 Slope of perpendicular equation: -2/5 Perpendicular equation: y --4 = -2/5(x -3) => 5y = -2x -14 Perpendicular equation in its general form: 2x+5y+14 = 0
The equation will be perpendicular to the given equation and have a slope of 3/4:- Perpendicular equation: y--3 = 3/4(x--2) => 4y--12 = 3x--6 => 4y = 3x-6 Perpendicular equation in its general form: 3x-4y-6 = 0
Known equation: 5x-2y = 3 or y = 5/2x -3/2 Slope of known equation: 5/2 Slope of perpendicular equation: -2/5 Perpendicular equation: y- -4 = -2/5(x-3) => 5y =-2x-14 Perpendicular equation in its general form: 2x+5y+14 = 0
First find the midpoint of (-2, 5) and (-8, -3) which is (-5, 1) Then find the slope of (-2, 5) and (-8, -3) which is 4/3 Slope of the perpendicular bisector is the negative reciprocal of 4/3 which is -3/4 Now form an equation of the straight line with a slope of -3/4 passing through the point (-5, 1) using the formula y-y1 = m(x-x1) The equation works out as: 3x+4y+11 = 0
To solve this, four steps are needed:Find the midpoint of the line segment (X, Y) which is a point on the perpendicular bisectorFind the slope m for the line segment: m = change_in_y/change_in_xFind the slope m' of the perpendicular line; the slopes of the lines are related by mm' = -1 → m' = -1/mFind the equation of the perpendicular bisector using the slope-point equation for a line passing through point (X, Y) with slope m': y - Y = m'(x - X)Have a go before reading the solution below.--------------------------------------------------------------------The midpoint of (7, 3) and (-6, 1) is at ((7 + -6)/2, (3 + 1)/2) = (1/2, 2)The slope of the line segment is: m = change_in_y/change_in_x = (1 - 3)/(-6 - 7) = -2/-13 = 2/13The slope of the perpendicular bisector is m' = -1/m = -1/(2/13) = -13/2The equation of the perpendicular bisector passing through point (X, Y) = (1/2, 2) with slope m' = -13/2 is given by:y - Y = m'(x - Y)→ y - 2 = -13/2(x - 1/2)→ 4y - 8 = -26x + 13→ 4y + 26x = 21
y=-x
In general 'to bisect' something means to cut it into two equal parts. The 'bisector' is the thing doing the cutting.In an angle bisector, it is a line passing through the vertex of the angle that cuts it into two equal smaller angles.Therefore it's in the definition.
Equation of original line is 4x + 3y - 5 = 0 that is, 3y = -4x + 5 or y = -(4/3)x + 5 Slope of original line = -4/3 Slope of line perpendicular to it = 3/4 General equation of perpendicular line: y = (3/4)x + c for some constant c or 4y = 3x + c' The point (-2,-3) is on this line so 4*(-3) = 3*(-2) + c' -12 = - 6 + c' so that c' = -6 The equation of the perpendicular line is 4y = 3x - 6
There is no name for it except "A line perpendicular to a line segment and passing through its midpoint".
y = 1/3x+4/3