The answer depends on the shape of the spinner and the numbers on it.
If I have understood the question correctly, the answer is 1/2.
1 half or 1 over 2
You find out how many choices there are in a spinner and then you take what it wants you to find the probability of and tur it into a fraction For example: You have a spinner with 4 triangles in it....2 are red and 2 are green,What is the probability of landing on a green triangle 2 out of 4
You have a 1/9 chance of landing a 2 on the first spin and a 1/9 chance of landing 5 on the second, so the chances of landing on a 2 then a 5 should be (1/9)*(1/9) = 1/81
9
1/2
It is 4/8 = 1/2
The probability of spinning the spinner and landing on an odd number depends on the number of odd numbers on the spinner and the total number of numbers on the spinner. If there are 3 odd numbers on the spinner and a total of 6 numbers, then the probability of landing on an odd number is 3/6, which simplifies to 1/2 or 50%.
If I have understood the question correctly, the answer is 1/2.
1 half or 1 over 2
The probability of landing on black twice on a spinner with white, black, and striped sections is (1/3)^2 = 1/9. This is because there is a 1/3 chance of landing on black on each spin, and the spins are independent events.
You find out how many choices there are in a spinner and then you take what it wants you to find the probability of and tur it into a fraction For example: You have a spinner with 4 triangles in it....2 are red and 2 are green,What is the probability of landing on a green triangle 2 out of 4
You have a 1/9 chance of landing a 2 on the first spin and a 1/9 chance of landing 5 on the second, so the chances of landing on a 2 then a 5 should be (1/9)*(1/9) = 1/81
9
The spinner has five equal sections marked 1 through 5, with the even numbers being 2 and 4. There are 2 favorable outcomes (landing on an even number) out of a total of 5 possible outcomes. Therefore, the probability of landing on an even number is ( \frac{2}{5} ) or 40%.
To calculate the probability of spinning the black region twice on a spinner, you first need to determine the total number of possible outcomes when spinning the spinner twice. Let's say the spinner has 8 equal sections, with 2 black regions. The total outcomes for spinning the spinner twice would be 8 x 8 = 64. The probability of landing on the black region twice would be 2/8 x 2/8 = 4/64 = 1/16. Therefore, the probability of landing on the black region twice is 1/16 or approximately 0.0625.
In a spinner numbered from 1 to 10, the multiples of 5 are 5 and 10. There are 2 favorable outcomes (5 and 10) out of a total of 10 possible outcomes. Therefore, the probability of landing on a multiple of 5 is 2 out of 10, which simplifies to 1/5 or 0.2. Thus, the probability is 20%.