answersLogoWhite

0


Best Answer

That depends on the value of the angle, theta. csc is short for "cosecans", and is the reciprocal of the sine. That is, csc theta = 1 / sin theta.

User Avatar

Wiki User

12y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What is csc theta?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Trigonometry

How do i simplify csc theta divided by sec theta?

By converting cosecants and secants to the equivalent sine and cosine functions. For example, csc theta is the same as 1 / sin thetha.


Verify that Cos theta cot theta plus sin theta equals csc theta?

It's easiest to show all of the work (explanations/identities), and x represents theta. cosxcotx + sinx = cscx cosx times cosx/sinx + sinx = csc x (Quotient Identity) cosx2 /sinx + sinx = csc x (multiplied) 1-sinx2/sinx + sinx = csc x (Pythagorean Identity) 1/sinx - sinx2/sinx + sinx = csc x (seperate fraction) 1/sinx -sinx + sinx = csc x (canceled) 1/sinx = csc x (cancelled) csc x =csc x (Reciprocal Identity)


How do you simplify sin theta times csc theta divided by tan theta?

Since sin(theta) = 1/cosec(theta) the first two terms simply camcel out and you are left with 1 divided by tan(theta), which is cot(theta).


How do you simplify csc theta cot theta?

There are 6 basic trig functions.sin(x) = 1/csc(x)cos(x) = 1/sec(x)tan(x) = sin(x)/cos(x) or 1/cot(x)csc(x) = 1/sin(x)sec(x) = 1/cos(x)cot(x) = cos(x)/sin(x) or 1/tan(x)---- In your problem csc(x)*cot(x) we can simplify csc(x).csc(x) = 1/sin(x)Similarly, cot(x) = cos(x)/sin(x).csc(x)*cot(x) = (1/sin[x])*(cos[x]/sin[x])= cos(x)/sin2(x) = cos(x) * 1/sin2(x)Either of the above answers should work.In general, try converting your trig functions into sine and cosine to make things simpler.


How do you figure this out Sin theta equals -0.0138 so theta equals what?

Depending on your calculator, you should have an arcsin function, which appears as sin^-1. It's usually a 2nd function of the sin key. If you don't have this function, there are many free calculators you can download... just google scientific calculator downloads.Anyway, this inverse function will give you theta when you plug in the value of sin theta. Here's the algebra written out:sin(theta)=-0.0138arcsin(sin(theta))=arcsin(-0.0138)theta=.......The inverse function applied to both sides of the equation "cancels out" the sin function and yields the value of the angle that was originally plugged into the function, in this case theta. You can use this principle to solve for theta for any of the other trig functions:arccos(cos(theta))=thetaarctan(tan(theta))=thetaand so on, but calculators usually only have these three inverse functions, so if you encounter a problem using sec, csc, or cot, you need to rewrite it as cos, sin, or tan.sec=1/coscsc=1/sincot=1/tan

Related questions

What is cos theta multiplied by csc theta?

It is cotangent(theta).


How do i simplify csc theta divided by sec theta?

By converting cosecants and secants to the equivalent sine and cosine functions. For example, csc theta is the same as 1 / sin thetha.


How do you get the csc theta given tan theta in quadrant 1?

If tan(theta) = x then sin(theta) = x/(sqrt(x2 + 1) so that csc(theta) = [(sqrt(x2 + 1)]/x = sqrt(1 + 1/x2)


Verify that Cos theta cot theta plus sin theta equals csc theta?

It's easiest to show all of the work (explanations/identities), and x represents theta. cosxcotx + sinx = cscx cosx times cosx/sinx + sinx = csc x (Quotient Identity) cosx2 /sinx + sinx = csc x (multiplied) 1-sinx2/sinx + sinx = csc x (Pythagorean Identity) 1/sinx - sinx2/sinx + sinx = csc x (seperate fraction) 1/sinx -sinx + sinx = csc x (canceled) 1/sinx = csc x (cancelled) csc x =csc x (Reciprocal Identity)


Express csc theta in terms of cot theta theta is in quadrant 3?

It is -sqrt(1 + cot^2 theta)


How do you simplify csc theta -cot theta cos theta?

For a start, try converting everything to sines and cosines.


How do you simplify cos theta times csc theta divided by tan theta?

'csc' = 1/sin'tan' = sin/cosSo it must follow that(cos) (csc) / (tan) = (cos) (1/sin)/(sin/cos) = (cos) (1/sin) (cos/sin) = (cos/sin)2


What is a trig function?

sin theta and csc theta are reciprocal functions because sin = y/r and csc = r/y you use the same 2 sides of a triangle, but you use the reciprocal.


How do you simplify sin theta times csc theta divided by tan theta?

Since sin(theta) = 1/cosec(theta) the first two terms simply camcel out and you are left with 1 divided by tan(theta), which is cot(theta).


How do you simplify csc theta cot theta cos theta?

cosec(q)*cot(q)*cos(q) = 1/sin(q)*cot(q)*cos(q) = cot2(q)


What is the exact value of cos theta if csc theta -4 with theta in quadrant III?

csc θ = 1/sin θ → sin θ = -1/4 cos² θ + sin² θ = 1 → cos θ = ± √(1 - sin² θ) = ± √(1 - ¼²) = ± √(1- 1/16) = ± √(15/16) = ± (√15)/4 In Quadrant III both cos and sin are negative → cos θ= -(√15)/4


How do you simplify csc theta minus cot x theta times cos theta plus 1?

There can be no significant simplicfication if some of the angles are theta and others are x, so assume that all angles are x. [csc(x) - cot(x)]*[cos(x) + 1] =[1/sin(x) - cos(x)/sin(x)]*[cos(x) + 1] =1/sin(x)*[1 - cos(x)]*[cos(x) + 1] =1/sin(x)*[1 - cos2(x)] =1/sin(x)*[sin2(x)] = sin(x)