If tan(theta) = x
then sin(theta) = x/(sqrt(x2 + 1) so that csc(theta) = [(sqrt(x2 + 1)]/x
= sqrt(1 + 1/x2)
With all due respect, you don't really want to know howto solve it.You just want the solution.csc(Θ) = 1/sin(Θ)tan(Θ) = sin(Θ)/cos(Θ)csc(Θ) x tan(Θ) = 1/sin(Θ) x sin(Θ)/cos(Θ) = 1/cos(Θ) = sec(Θ)
sin(t) = 7/13 cos2(t) = 1 - sin2(t) = (169 - 49)/169 = 120/169 so cos(t) = ±sqrt(120)/13. But sin(t) > 0, tan(t) < 0 implies t is in the second quadrant so cos(t) = -sqrt(120)/13 And then tan(t) = sin(t)/cos(t) = -7/sqrt(120) = -0.6390 (approx).
-2(cot2theta)
Remember that tan = sin/cos. So your expression is sin/cos times cos. That's sin(theta).
They are theta = -34.99 degrees and 145.09 deg.
'csc' = 1/sin'tan' = sin/cosSo it must follow that(cos) (csc) / (tan) = (cos) (1/sin)/(sin/cos) = (cos) (1/sin) (cos/sin) = (cos/sin)2
Cotan(theta) is the reciprocal of the tan(theta). So, cot(theta) = 1/2.
0.75
Since sin(theta) = 1/cosec(theta) the first two terms simply camcel out and you are left with 1 divided by tan(theta), which is cot(theta).
If tan theta equals 2, then the sides of the triangle could be -2, -1, and square root of 5 (I used the Pythagorean Theorem to get this). From this, sec theta is negative square root of 5. It is negative because theta is in the third quadrant, where cosine, secant, sine, and cosecant are all negative.
In the third quadrant, both the x and y coordinates are negative. Since tangent is defined as the ratio of the opposite side to the adjacent side in a right triangle, in the third quadrant where both sides are negative, the tangent of an angle theta will be positive. Therefore, tan theta is not negative in the third quadrant.
If tan A = 1/2, then sin A = ? We use the Pythagorean identity 1 + cot2 A = csc2 A to find csc A, and then the reciprocal identity sin A = 1/csc A to find sin A. tan A = 1/2 (since tan A is positive, A is in the first or the third quadrant) cot A = 1/tan A = 1/(1/2) = 2 1 + cot2 A = csc2 A 1 + (2)2 = csc2 A 5 = csc2 A √5 = csc A (when A is in the first quadrant) 1/√5 = sin A √5/5 = sin A If A is in the third quadrant, then sin A = -√5/5.
tan2(theta) + 5*tan(theta) = 0 => tan(theta)*[tan(theta) + 5] = 0=> tan(theta) = 0 or tan(theta) = -5If tan(theta) = 0 then tan(theta) + cot(theta) is not defined.If tan(theta) = -5 then tan(theta) + cot(theta) = -5 - 1/5 = -5.2
tan = sin/cos Now cos2 = 1 - sin2 so cos = +/- sqrt(1 - sin2) In the second quadrant, cos is negative, so cos = - sqrt(1 - sin2) So that tan = sin/[-sqrt(1 - sin2)] or -sin/sqrt(1 - sin2)
No, they cannot all be negative and retain the same value for theta, as is shown with the four quadrants and their trigonemtric properties. For example, in the first quadrant (0
With all due respect, you don't really want to know howto solve it.You just want the solution.csc(Θ) = 1/sin(Θ)tan(Θ) = sin(Θ)/cos(Θ)csc(Θ) x tan(Θ) = 1/sin(Θ) x sin(Θ)/cos(Θ) = 1/cos(Θ) = sec(Θ)
-0.5736