Best Answer

If tan(theta) = x

then sin(theta) = x/(sqrt(x2 + 1) so that csc(theta) = [(sqrt(x2 + 1)]/x

= sqrt(1 + 1/x2)

User Avatar

Wiki User

โˆ™ 2012-06-26 16:37:44
This answer is:
User Avatar
Study guides


20 cards

A polynomial of degree zero is a constant term

The grouping method of factoring can still be used when only some of the terms share a common factor A True B False

The sum or difference of p and q is the of the x-term in the trinomial

A number a power of a variable or a product of the two is a monomial while a polynomial is the of monomials

See all cards
1036 Reviews

Add your answer:

Earn +20 pts
Q: How do you get the csc theta given tan theta in quadrant 1?
Write your answer...
Still have questions?
magnify glass
Related questions

If tan Theta equals 2 with Theta in Quadrant 3 find cot Theta?

Cotan(theta) is the reciprocal of the tan(theta). So, cot(theta) = 1/2.

How do you simplify cos theta times csc theta divided by tan theta?

'csc' = 1/sin'tan' = sin/cosSo it must follow that(cos) (csc) / (tan) = (cos) (1/sin)/(sin/cos) = (cos) (1/sin) (cos/sin) = (cos/sin)2

If sin theta equals 3/4 and theta is in quadrant II what is the value of tan theta?


How do you simplify sin theta times csc theta divided by tan theta?

Since sin(theta) = 1/cosec(theta) the first two terms simply camcel out and you are left with 1 divided by tan(theta), which is cot(theta).

If tansqtheta plus 5tantheta0 find the value of tantheta plus cottheta?

tan2(theta) + 5*tan(theta) = 0 => tan(theta)*[tan(theta) + 5] = 0=> tan(theta) = 0 or tan(theta) = -5If tan(theta) = 0 then tan(theta) + cot(theta) is not defined.If tan(theta) = -5 then tan(theta) + cot(theta) = -5 - 1/5 = -5.2

What is sec theta if tan theta equals 2 with theta in quadrant 3?

If tan theta equals 2, then the sides of the triangle could be -2, -1, and square root of 5 (I used the Pythagorean Theorem to get this). From this, sec theta is negative square root of 5. It is negative because theta is in the third quadrant, where cosine, secant, sine, and cosecant are all negative.

Is it possible for sin theta cos theta and tan theta to all be negative for the same value of theta?

No, they cannot all be negative and retain the same value for theta, as is shown with the four quadrants and their trigonemtric properties. For example, in the first quadrant (0

What is tan x csc x?

tan(x)*csc(x) = sec(x)

What is tan theta in terms of sin theta in quadrant II?

tan = sin/cos Now cos2 = 1 - sin2 so cos = +/- sqrt(1 - sin2) In the second quadrant, cos is negative, so cos = - sqrt(1 - sin2) So that tan = sin/[-sqrt(1 - sin2)] or -sin/sqrt(1 - sin2)

By using trigonometric identities find the value of sin A if tan A equals a half?

If tan A = 1/2, then sin A = ? We use the Pythagorean identity 1 + cot2 A = csc2 A to find csc A, and then the reciprocal identity sin A = 1/csc A to find sin A. tan A = 1/2 (since tan A is positive, A is in the first or the third quadrant) cot A = 1/tan A = 1/(1/2) = 2 1 + cot2 A = csc2 A 1 + (2)2 = csc2 A 5 = csc2 A √5 = csc A (when A is in the first quadrant) 1/√5 = sin A √5/5 = sin A If A is in the third quadrant, then sin A = -√5/5.

Is tan theta in the 3rd quadrant negative?

it is POSITIVE because tangent is said to be as OPPOSITE all over ADJACENT side of the triangle. since the opposite and adjacent sides of theta in Quadrant 3 are both negative, the quotient of two negative integers is POSITIVE. in third quadrant tanƟ= -O/-A

How do you simplify csc theta tan theta?

With all due respect, you don't really want to know howto solve it.You just want theΘ) = 1/sin(Θ)tan(Θ) = sin(Θ)/cos(Θ)csc(Θ) x tan(Θ) = 1/sin(Θ) x sin(Θ)/cos(Θ) = 1/cos(Θ) = sec(Θ)

People also asked