A huge practical application of trig is Fourier series. Fourier series says you can represent any periodic function as a sum of infinite sines and cosines. By constructively/destructively overlapping different frequencies with specific amplitudes, you can mimic a function, or signal, or different types of boundary conditions. With more terms, aka more frequencies, you get closer and closer to the actual function.
Fourier series is the only way to solve some types of differential equations. In digital signal processing, fourier series is extremely important because it gives the option of changing a time domain signal into a frequency domain signal. This allows you to manipulate signals in ways one couldn't imagine. Its used in filters, compression, data transmission, etc. The end results affect cell phones, televisions, any kind of digital filter, etc...
Chat with our AI personalities
tan(9) + tan(81) = sin(9)/cos(9) + sin(81)/cos(81)= {sin(9)*cos(81) + sin(81)*cos(9)} / {cos(9)*cos(81)} = 1/2*{sin(-72) + sin(90)} + 1/2*{sin(72) + sin(90)} / 1/2*{cos(-72) + cos(90)} = 1/2*{sin(-72) + 1 + sin(72) + 1} / 1/2*{cos(-72) + 0} = 2/cos(72) since sin(-72) = -sin(72), and cos(-72) = cos(72) . . . . . (A) Also tan(27) + tan(63) = sin(27)/cos(27) + sin(63)/cos(63) = {sin(27)*cos(63) + sin(63)*cos(27)} / {cos(27)*cos(63)} = 1/2*{sin(-36) + sin(90)} + 1/2*{sin(72) + sin(36)} / 1/2*{cos(-36) + cos(90)} = 1/2*{sin(-36) + 1 + sin(36) + 1} / 1/2*{cos(-36) + 0} = 2/cos(36) since sin(-36) = -sin(36), and cos(-36) = cos(36) . . . . . (B) Therefore, by (A) and (B), tan(9) - tan(27) - tan(63) + tan(81) = tan(9) + tan(81) - tan(27) - tan(63) = 2/cos(72) – 2/cos(36) = 2*{cos(36) – cos(72)} / {cos(72)*cos(36)} = 2*2*sin(54)*sin(18)/{cos(72)*cos(36)} . . . . . . . (C) But cos(72) = sin(90-72) = sin(18) so that sin(18)/cos(72) = 1 and cos(36) = sin(90-36) = sin(54) so that sin(54)/cos(36) = 1 and therefore from C, tan(9) – tan(27) – tan(63) + tan(81) = 2*2*1*1 = 4
sin 2θ = 2(sin θ)(cos θ) cos 2θ = (cos θ)2 - (sin θ)2 cos 2θ = 2(cos θ)2 - 1 cos 2θ = 1 - 2(sin θ)2 tan 2θ = 2(tan θ)/[1 - (tan θ)2] sin θ/2 = ±√[(1 - (cos θ))/2] cos θ/2 = ±√[(1 + (cos θ))/2] tan θ/2 = ±√[(1 - (cos θ))/(1 + (cos θ))] ; cos θ ≠ -1 tan θ/2 = [1 - (cos θ)]/(sin θ) tan θ/2 = (sin θ)/[1 + (cos θ)]
Well I don't exactly get "the solution", but simplifying the equation is quite simple. Maybe that's what you're looking for. Here are the steps for simplifying it. costancsc = 1 1. Change tan to sin/cos 2. Change csc to 1/sin cos(sin/cos)(1/sin) = 1 And as you can now see, the first cos cancels with the second one under the sin/cos fraction, and the first sin cancels with the second one under the 1/sin fraction consequentially leaving you with 1 = 1. For a better look, notice this fraction when all three parts are combined cos * sin * 1 ---------------- cos * sin See how the cos and sin cancel each other leaving you with 1 * 1 * 1 which is just 1. Therefore the final simplification is just 1 = 1. I hope this helps!
-1
cos(x)=sin(x-tau/4) tan(x)=sin(x)/cos(x) sin(x)=tan(x)*cos(x) cos(x)=tan(x-tau/4)*cos(x-tau/4) you can see that we have some circular reasoning going on, so the best we can do is express it as a combination of sines and cotangents: cos(x)=1/cot(x-tau/4)*sin(x-tau/2) tau=2*pi