answersLogoWhite

0

A huge practical application of trig is Fourier series. Fourier series says you can represent any periodic function as a sum of infinite sines and cosines. By constructively/destructively overlapping different frequencies with specific amplitudes, you can mimic a function, or signal, or different types of boundary conditions. With more terms, aka more frequencies, you get closer and closer to the actual function.

Fourier series is the only way to solve some types of differential equations. In digital signal processing, fourier series is extremely important because it gives the option of changing a time domain signal into a frequency domain signal. This allows you to manipulate signals in ways one couldn't imagine. Its used in filters, compression, data transmission, etc. The end results affect cell phones, televisions, any kind of digital filter, etc...

User Avatar

Wiki User

16y ago

Still curious? Ask our experts.

Chat with our AI personalities

ViviVivi
Your ride-or-die bestie who's seen you through every high and low.
Chat with Vivi
CoachCoach
Success isn't just about winning—it's about vision, patience, and playing the long game.
Chat with Coach
TaigaTaiga
Every great hero faces trials, and you—yes, YOU—are no exception!
Chat with Taiga

Add your answer:

Earn +20 pts
Q: When are Sin Cos and Tan used in life?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Trigonometry

How tan9-tan27-tan63 tan81 equals 4?

tan(9) + tan(81) = sin(9)/cos(9) + sin(81)/cos(81)= {sin(9)*cos(81) + sin(81)*cos(9)} / {cos(9)*cos(81)} = 1/2*{sin(-72) + sin(90)} + 1/2*{sin(72) + sin(90)} / 1/2*{cos(-72) + cos(90)} = 1/2*{sin(-72) + 1 + sin(72) + 1} / 1/2*{cos(-72) + 0} = 2/cos(72) since sin(-72) = -sin(72), and cos(-72) = cos(72) . . . . . (A) Also tan(27) + tan(63) = sin(27)/cos(27) + sin(63)/cos(63) = {sin(27)*cos(63) + sin(63)*cos(27)} / {cos(27)*cos(63)} = 1/2*{sin(-36) + sin(90)} + 1/2*{sin(72) + sin(36)} / 1/2*{cos(-36) + cos(90)} = 1/2*{sin(-36) + 1 + sin(36) + 1} / 1/2*{cos(-36) + 0} = 2/cos(36) since sin(-36) = -sin(36), and cos(-36) = cos(36) . . . . . (B) Therefore, by (A) and (B), tan(9) - tan(27) - tan(63) + tan(81) = tan(9) + tan(81) - tan(27) - tan(63) = 2/cos(72) – 2/cos(36) = 2*{cos(36) – cos(72)} / {cos(72)*cos(36)} = 2*2*sin(54)*sin(18)/{cos(72)*cos(36)} . . . . . . . (C) But cos(72) = sin(90-72) = sin(18) so that sin(18)/cos(72) = 1 and cos(36) = sin(90-36) = sin(54) so that sin(54)/cos(36) = 1 and therefore from C, tan(9) – tan(27) – tan(63) + tan(81) = 2*2*1*1 = 4


What are the double-angle and half-angle identities?

sin 2θ = 2(sin θ)(cos θ) cos 2θ = (cos θ)2 - (sin θ)2 cos 2θ = 2(cos θ)2 - 1 cos 2θ = 1 - 2(sin θ)2 tan 2θ = 2(tan θ)/[1 - (tan θ)2] sin θ/2 = ±√[(1 - (cos θ))/2] cos θ/2 = ±√[(1 + (cos θ))/2] tan θ/2 = ±√[(1 - (cos θ))/(1 + (cos θ))] ; cos θ ≠ -1 tan θ/2 = [1 - (cos θ)]/(sin θ) tan θ/2 = (sin θ)/[1 + (cos θ)]


What is the solution for cos tan csc equals 1?

Well I don't exactly get "the solution", but simplifying the equation is quite simple. Maybe that's what you're looking for. Here are the steps for simplifying it. costancsc = 1 1. Change tan to sin/cos 2. Change csc to 1/sin cos(sin/cos)(1/sin) = 1 And as you can now see, the first cos cancels with the second one under the sin/cos fraction, and the first sin cancels with the second one under the 1/sin fraction consequentially leaving you with 1 = 1. For a better look, notice this fraction when all three parts are combined cos * sin * 1 ---------------- cos * sin See how the cos and sin cancel each other leaving you with 1 * 1 * 1 which is just 1. Therefore the final simplification is just 1 = 1. I hope this helps!


How do you show that sinxcosxtanx equals 1-cos2x?

-1


How do you express cosine in terms of cotangent?

cos(x)=sin(x-tau/4) tan(x)=sin(x)/cos(x) sin(x)=tan(x)*cos(x) cos(x)=tan(x-tau/4)*cos(x-tau/4) you can see that we have some circular reasoning going on, so the best we can do is express it as a combination of sines and cotangents: cos(x)=1/cot(x-tau/4)*sin(x-tau/2) tau=2*pi