Well I don't exactly get "the solution", but simplifying the equation is quite simple. Maybe that's what you're looking for. Here are the steps for simplifying it.
costancsc = 1
1. Change tan to sin/cos
2. Change csc to 1/sin
cos(sin/cos)(1/sin) = 1
And as you can now see, the first cos cancels with the second one under the sin/cos fraction, and the first sin cancels with the second one under the 1/sin fraction consequentially leaving you with 1 = 1.
For a better look, notice this fraction when all three parts are combined
cos * sin * 1
----------------
cos * sin
See how the cos and sin cancel each other leaving you with 1 * 1 * 1 which is just 1. Therefore the final simplification is just 1 = 1.
I hope this helps!
There are 6 basic trig functions.sin(x) = 1/csc(x)cos(x) = 1/sec(x)tan(x) = sin(x)/cos(x) or 1/cot(x)csc(x) = 1/sin(x)sec(x) = 1/cos(x)cot(x) = cos(x)/sin(x) or 1/tan(x)---- In your problem csc(x)*cot(x) we can simplify csc(x).csc(x) = 1/sin(x)Similarly, cot(x) = cos(x)/sin(x).csc(x)*cot(x) = (1/sin[x])*(cos[x]/sin[x])= cos(x)/sin2(x) = cos(x) * 1/sin2(x)Either of the above answers should work.In general, try converting your trig functions into sine and cosine to make things simpler.
Sin(30) = 1/2 Sin(45) = root(2)/2 Sin(60) = root(3)/2 Cos(30) = root(3)/2 Cos(45) = root(2)/2 Cos(60) = 1/2 Tan(30) = root(3)/3 Tan(45) = 1 Tan(60) = root(3) Csc(30) = 2 Csc(45) = root(2) Csc(60) = 2root(3)/3 Sec(30) = 2root(3)/3 Sec(45) = root(2) Sec(60) = 2 Cot(30) = root(3) Cot(45) = 1 Cot(60) = root(3)/3
tan(9) + tan(81) = sin(9)/cos(9) + sin(81)/cos(81)= {sin(9)*cos(81) + sin(81)*cos(9)} / {cos(9)*cos(81)} = 1/2*{sin(-72) + sin(90)} + 1/2*{sin(72) + sin(90)} / 1/2*{cos(-72) + cos(90)} = 1/2*{sin(-72) + 1 + sin(72) + 1} / 1/2*{cos(-72) + 0} = 2/cos(72) since sin(-72) = -sin(72), and cos(-72) = cos(72) . . . . . (A) Also tan(27) + tan(63) = sin(27)/cos(27) + sin(63)/cos(63) = {sin(27)*cos(63) + sin(63)*cos(27)} / {cos(27)*cos(63)} = 1/2*{sin(-36) + sin(90)} + 1/2*{sin(72) + sin(36)} / 1/2*{cos(-36) + cos(90)} = 1/2*{sin(-36) + 1 + sin(36) + 1} / 1/2*{cos(-36) + 0} = 2/cos(36) since sin(-36) = -sin(36), and cos(-36) = cos(36) . . . . . (B) Therefore, by (A) and (B), tan(9) - tan(27) - tan(63) + tan(81) = tan(9) + tan(81) - tan(27) - tan(63) = 2/cos(72) – 2/cos(36) = 2*{cos(36) – cos(72)} / {cos(72)*cos(36)} = 2*2*sin(54)*sin(18)/{cos(72)*cos(36)} . . . . . . . (C) But cos(72) = sin(90-72) = sin(18) so that sin(18)/cos(72) = 1 and cos(36) = sin(90-36) = sin(54) so that sin(54)/cos(36) = 1 and therefore from C, tan(9) – tan(27) – tan(63) + tan(81) = 2*2*1*1 = 4
sin(90°) = 1 cos(90°) = 0 tan(90°) = ∞ sec(90°) = ∞ csc(90°) = 1 cot(90°) = 0
-1
'csc' = 1/sin'tan' = sin/cosSo it must follow that(cos) (csc) / (tan) = (cos) (1/sin)/(sin/cos) = (cos) (1/sin) (cos/sin) = (cos/sin)2
(tan x + cot x)/sec x . csc x The key to solve this question is to turn tan x, cot x, sec x, csc x into the simpler form. Remember that tan x = sin x / cos x, cot x = 1/tan x, sec x = 1/cos x, csc x = 1/sin x The solution is: [(sin x / cos x)+(cos x / sin x)] / (1/cos x . 1/sin x) [(sin x . sin x + cos x . cos x) / (sin x . cos x)] (1/sin x cos x) [(sin x . sin x + cos x . cos x) / (sin x . cos x)] (sin x . cos x) then sin x. sin x + cos x . cos x sin2x+cos2x =1 The answer is 1.
either cos OR tan-sin equals zero socos=0 at pi/2 and 3pi/2ortan=sin which is impossibleim not sure though
To show that (cos tan = sin) ??? Remember that tan = (sin/cos) When you substitute it for tan, cos tan = cos (sin/cos) = sin QED
cot(x)=1/tan(x)=1/(sin(x)/cos(x))=cos(x)/sin(x) csc(x)=1/sin(x) sec(x)=1/cos(x) Therefore, (csc(x))2/cot(x)=(1/(sin(x))2)/cot(x)=(1/(sin(x))2)/(cos(x)/sin(x))=(1/(sin(x))2)(sin(x)/cos(x))=(1/sin(x))*(1/cos(x))=csc(x)*sec(x)
Yes.
There are 6 basic trig functions.sin(x) = 1/csc(x)cos(x) = 1/sec(x)tan(x) = sin(x)/cos(x) or 1/cot(x)csc(x) = 1/sin(x)sec(x) = 1/cos(x)cot(x) = cos(x)/sin(x) or 1/tan(x)---- In your problem csc(x)*cot(x) we can simplify csc(x).csc(x) = 1/sin(x)Similarly, cot(x) = cos(x)/sin(x).csc(x)*cot(x) = (1/sin[x])*(cos[x]/sin[x])= cos(x)/sin2(x) = cos(x) * 1/sin2(x)Either of the above answers should work.In general, try converting your trig functions into sine and cosine to make things simpler.
With all due respect, you don't really want to know howto solve it.You just want the solution.csc(Θ) = 1/sin(Θ)tan(Θ) = sin(Θ)/cos(Θ)csc(Θ) x tan(Θ) = 1/sin(Θ) x sin(Θ)/cos(Θ) = 1/cos(Θ) = sec(Θ)
From math class, some trigonometric identities: cot x = 1/tan x csc x = 1/sin x sec x = 1/cos x There are no built-in cot or csc formulas, so use the above. Remember that these give errors when tan x, sin x, or cos x are equal to 0.
All those can be calculated quickly with your calculator. Just be sure it is in "degrees" mode (not in radians). Also, use the following identities: csc(x) = 1 / sin(x) sec(x) = 1 / cos(x) cot(x) = 1 / tan(x) or the equivalent cos(x) / sin(x)
csc[]tan[] = sec[]. L: Change csc[] into one over sin[]. Change tan[] into sin[] over cos[]. R: Change sec[] into one over cos[]. 1/sin[] times sin[]/cos[] = 1/cos[]. L: To multiply 2 fractions, multiply the numerators, and multiply the denominators, and put the numerators' product over the denominators' product. R: Nothing more to do. sin[]/sin[]cos[] = 1/cos[]. L: You have a sin[] on both top and bottom. Cross them off to get a one on the top. 1/cos[] = 1/cos[]. Done. [] is theta. L is the left side of the equation. R is the right side.
tan(x)*csc(x) = sec(x)