Want this question answered?

Q: Which equation describes a parabola that opens left or right and whose vertex is at the point (hv)?

Write your answer...

Submit

Still have questions?

Continue Learning about Math & Arithmetic

Since the vertex is at the origin and the parabola opens downward, the equation of the parabola is x2 = 4py, where p < 0, and the axis of symmetry is the y-axis. So the focus is at y-axis at (0, p) and the directrix equation is y = -p. Now, what do you mean with 1 and 76 units? 1.76 units? If the distance of the vertex and the focus is 1.76 units, then p = -1.76, thus 4p = -7.04, then the equation of the parabola is x2 = -7.04y.

The maximum.

Vertex

maximum point :)

First you need more details about the parabola. Then - if the parabola opens upward - you can assume that the lowest point of the triangle is at the vertex; write an equation for each of the lines in the equilateral triangle. These lines will slope upwards (or downwards) at an angle of 60°; you must convert that to a slope (using the tangent function). Once you have the equation of the lines and the parabola, solve them simultaneously to check at what points they cross. Finally you can use the Pythagorean Theorem to calculate the length.

Related questions

The standard equation for a Parabola with is vertex at the origin (0,0) is, x2 = 4cy if the parabola opens vertically upwards/downwards, or y2 = 4cx when the parabola opens sideways. As the focus is at (0,6) then the focus is vertically above the vertex and we have an upward opening parabola. Note that c is the distance from the vertex to the focus and in this case has a value of 6 (a positive number). The equation is thus, x2 = 4*6y = 24y

Finding the vertex of the parabola is important because it tells you where the bottom (or the top, for a parabola that 'opens' downward), and thus where you can begin graphing.

This is called the 'standard form' for the equation of a parabola:y =a (x-h)2+vDepending on whether the constant a is positive or negative, the parabola will open up or down.

focus , directrix

If the equation of the parabola isy = ax^2 + bx + c, then it opens above when a>0 and opens below when a<0. [If a = 0 then the equation describes a straight line, and not a parabola!].

The given terms can't be an equation without an equality sign but a negative parabola opens down wards whereas a positive parabola opens up wards.

Is a parabola whose directrix is below its vertex.

Since the vertex is at the origin and the parabola opens downward, the equation of the parabola is x2 = 4py, where p < 0, and the axis of symmetry is the y-axis. So the focus is at y-axis at (0, p) and the directrix equation is y = -p. Now, what do you mean with 1 and 76 units? 1.76 units? If the distance of the vertex and the focus is 1.76 units, then p = -1.76, thus 4p = -7.04, then the equation of the parabola is x2 = -7.04y.

The maximum.

Vertex

Opening up, the vertex is a minimum.

The maximum point.