It works out as -5 for each consecutive term
The nth term is 4n-1 and so the next term will be 19
It is: nth term = 29-7n
The single number 37111519 does not comprise a sequence.A single number such as 37111519 does not constitute a sequence and so there can be no nth term.
The nth term is Un = a + (n-1)*d where a = U1 is the first term, and d is the common difference.
The nth term is -7n+29 and so the next term will be -6
The nth term of the sequence is 2n + 1.
The given sequence is 11, 31, 51, 72 The nth term of this sequence can be expressed as an = 11 + (n - 1) × 20 Therefore, the nth term is 11 + (n - 1) × 20, where n is the position of the term in the sequence.
One of the infinitely many possible rules for the nth term of the sequence is t(n) = 4n - 1
The nth term is 4n-1 and so the next term will be 19
The nth term of the sequence is (n + 1)2 + 2.
10n + 1
The given sequence is 1, 6, 13, 22, 33. To find the nth term, we can observe that the differences between consecutive terms are 5, 7, 9, and 11, which indicates that the sequence is quadratic. The nth term can be expressed as ( a_n = n^2 + n ), where ( a_n ) is the nth term of the sequence. Thus, the formula for the nth term is ( a_n = n^2 + n ).
The 'n'th term is [ 4 - 3n ].
The 'n'th term is [ 4 - 3n ].
The 'n'th term is [ 4 - 3n ].
I believe the answer is: 11 + 6(n-1) Since the sequence increases by 6 each term we can find the value of the nth term by multiplying n-1 times 6. Then we add 11 since it is the starting point of the sequence. The formula for an arithmetic sequence: a_{n}=a_{1}+(n-1)d
Each number in this sequence is twice the previous number. The nth. term is 2n-1.Each number in this sequence is twice the previous number. The nth. term is 2n-1.Each number in this sequence is twice the previous number. The nth. term is 2n-1.Each number in this sequence is twice the previous number. The nth. term is 2n-1.