answersLogoWhite

0

What else can I help you with?

Continue Learning about Algebra

What equation represents a line parallel to the graph of 2x - 4y equals 16?

2x-4y = 16 -4y = -2x+16 y = 1/2x-4 Any equation that has a slope of 1/2 but a different intercept of -4.


What is the vertex of the graph -2x2 16x -15?

Considering a general quadratic equation y=ax^2 + bx + c, the x coordinate of the vertex is found from the formula x= -b/2a and the y coordinate is found from putting that x coordinate back into the original quadratic equation which in this case I am assuming is y= -2x^2 + 16x -15. So, the x coordinate of the vertex is x=-16/(2*-2) = 4 To find the y coordinate we plug 4 back into y= -2x^2 + 16x -15 so we have y= -2 * 4^2 + 16*4 - 15. Following the order of operations we get y= -2 *16 + 64 - 15= 17 Therefore the vertex is at (4, 17).


3x plus 6y equals 48?

You could graph this Polynomial by using substution to solve for two points..which will define a line. If x=16, then y=0, If x=0, then y=8. Graph this line and you have the solution set for the equation.


What are the vertex and the axis of symmetry of the equation y equals 2x² plus 4x - 10?

In the form y = ax² + bx + c the axis of symmetry is given by the line x = -b/2a The axis of symmetry runs through the vertex, and the vertex is given by (-b/2a, -b²/4a + c). For y = 2x² + 4x - 10: → axis of symmetry is x = -4/(2×2) = -4/4 = -1 → vertex = (-1, -4²/(4×2) - 10) = (-1, -16/8 - 10) = (-1, -12)


What is the graph of x radical x-16?

g(x) = √(x - 16) The graph of g(x) = √(x - 16) has the same shape as the graph of f(x) = √x. However, it is shifted horizontally to the right 16 units. The graph of the function f(x)=square root(x) is made up of half a parabola (in the first quadrant) with directrix (16, 0), which opens rightward. The domain is [16,∞) and range [0, ∞).

Related Questions

What equation represents a line parallel to the graph of 2x - 4y equals 16?

2x-4y = 16 -4y = -2x+16 y = 1/2x-4 Any equation that has a slope of 1/2 but a different intercept of -4.


What is the line of symmetry of the graph of the equation?

Answer this question… What is the line of symmetry of the graph of the equation ? A. x = -2 B. x = -4 C. x = -16 D. x = -8


The vertex form of the equation of a parabola is y x-5 2 plus 16 what is the standard form of the equation?

In the equation y x-5 2 plus 16 the standard form of the equation is 13. You find the answer to this by finding the value of X.


How do you write an equation that represents the statement 10 percent of 160 is 16?

160 x 0.1 = 16


What is the coefficient of the squared term in the parabola's equation when the vertex is at 3 5 and the point -1 6 is on it?

A parabola with vertex (h, k) has equation of the form: y = a(x - h)² + k → vertex (k, h) = (3, 5), and a point on it is (-1, 6) → 6 = a(-1 - 3)² + 5 → 6 = a(-4)² + 5 → 1 = 16a → a = 1/16 → The coefficient of the x² term is 1/16


What is the vertex of the graph -2x2 16x -15?

Considering a general quadratic equation y=ax^2 + bx + c, the x coordinate of the vertex is found from the formula x= -b/2a and the y coordinate is found from putting that x coordinate back into the original quadratic equation which in this case I am assuming is y= -2x^2 + 16x -15. So, the x coordinate of the vertex is x=-16/(2*-2) = 4 To find the y coordinate we plug 4 back into y= -2x^2 + 16x -15 so we have y= -2 * 4^2 + 16*4 - 15. Following the order of operations we get y= -2 *16 + 64 - 15= 17 Therefore the vertex is at (4, 17).


What does y equals 9 mean when x equals 16?

This is slightly out of context but you will have an equation of a graph we call it x and y because they are the axises we use on a graph. Usually in an equation we try to find the value of y. An equation that works in this case is y=x-7 but there are many others. But if we use the example i have given when x=16 this means y=16-7 which is 9 if you were to plot this point on a graph it would be 16 across the x axis and 9 up Hope this helps


What does 3k plus 16 equals 5k?

It represents an algebraic equation in the variable, k.


When vertex of this parabola is at (35) . When the y-value is 6 the x-value is -1. what is the coefficient of the squared term in the parabolas equation?

It is 1/16.


When you subtract one square number from another the answer is 16 what are the two squared numbers?

x2 -y2 =16 This is an equation that describes your problem. We can write this equation as (1/16)x2 -(1/16)y2 =1 You may recognize this as the equation whose graph is a hyperbola. So there are an infinite number of solutions.


What is dense graph and sparse graph?

Sparse vs. Dense GraphsInformally, a graph with relatively few edges is sparse, and a graph with many edges is dense. The following definition defines precisely what we mean when we say that a graph ``has relatively few edges'': Definition (Sparse Graph) A sparse graph is a graph in which .For example, consider a graph with n nodes. Suppose that the out-degree of each vertex in G is some fixed constant k. Graph G is a sparse graph because .A graph that is not sparse is said to be dense:Definition (Dense Graph) A dense graph is a graph in which .For example, consider a graph with n nodes. Suppose that the out-degree of each vertex in G is some fraction fof n, . E.g., if n=16 and f=0.25, the out-degree of each node is 4. Graph G is a dense graph because .


How do u find the equation of the axis of symmetry and the vertex of the graph of each function for example y x2-8x-9 Plz help i need to know this?

To find the equation of the axis of symmetry for the quadratic function (y = x^2 - 8x - 9), use the formula (x = -\frac{b}{2a}), where (a = 1) and (b = -8). This gives (x = -\frac{-8}{2 \cdot 1} = 4). The vertex can be found by substituting this (x) value back into the original equation: (y = 4^2 - 8(4) - 9 = 16 - 32 - 9 = -25). Thus, the vertex is at the point ((4, -25)) and the axis of symmetry is the line (x = 4).