7
Chat with our AI personalities
2x-4y = 16 -4y = -2x+16 y = 1/2x-4 Any equation that has a slope of 1/2 but a different intercept of -4.
Considering a general quadratic equation y=ax^2 + bx + c, the x coordinate of the vertex is found from the formula x= -b/2a and the y coordinate is found from putting that x coordinate back into the original quadratic equation which in this case I am assuming is y= -2x^2 + 16x -15. So, the x coordinate of the vertex is x=-16/(2*-2) = 4 To find the y coordinate we plug 4 back into y= -2x^2 + 16x -15 so we have y= -2 * 4^2 + 16*4 - 15. Following the order of operations we get y= -2 *16 + 64 - 15= 17 Therefore the vertex is at (4, 17).
You could graph this Polynomial by using substution to solve for two points..which will define a line. If x=16, then y=0, If x=0, then y=8. Graph this line and you have the solution set for the equation.
In the form y = ax² + bx + c the axis of symmetry is given by the line x = -b/2a The axis of symmetry runs through the vertex, and the vertex is given by (-b/2a, -b²/4a + c). For y = 2x² + 4x - 10: → axis of symmetry is x = -4/(2×2) = -4/4 = -1 → vertex = (-1, -4²/(4×2) - 10) = (-1, -16/8 - 10) = (-1, -12)
g(x) = √(x - 16) The graph of g(x) = √(x - 16) has the same shape as the graph of f(x) = √x. However, it is shifted horizontally to the right 16 units. The graph of the function f(x)=square root(x) is made up of half a parabola (in the first quadrant) with directrix (16, 0), which opens rightward. The domain is [16,∞) and range [0, ∞).