answersLogoWhite

0

Still curious? Ask our experts.

Chat with our AI personalities

SteveSteve
Knowledge is a journey, you know? We'll get there.
Chat with Steve
FranFran
I've made my fair share of mistakes, and if I can help you avoid a few, I'd sure like to try.
Chat with Fran
BeauBeau
You're doing better than you think!
Chat with Beau

Add your answer:

Earn +20 pts
Q: Can a non continuous function be differentiable?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Calculus

Where is f(x) discontinuous but not differentiable Explain?

Wherever a function is differentiable, it must also be continuous. The opposite is not true, however. For example, the absolute value function, f(x) =|x|, is not differentiable at x=0 even though it is continuous everywhere.


When you say a function is not differentiable?

Well, firstly, the derivative of a function simply refers to slope. Usually we say that the function is not differentiable at a point.Say you have a function such as this:f(x)=|x|Another way to represent that would be as a piece-wise function:g(x) = { -x for x= 0The problem arises at the specific point x=0. If you look at the slope--the change in the function--from the left and right of x, you notice that it is different, negative 1 and positive 1. So, we can say that the function is not differentiable at x=0 because of that sudden change.There are however, a few functions that are nowhere differentiable. One example is the Weirstrass function. The even more ironic thing about this function is that it is continuous everywhere! Since this function is not differentiable anywhere, many might call it a non-differentiable function.There are absolutely other examples.


Can a graph be differentiable at a specific point but not continuous at the same point?

Not according to the usual definitions of "differentiable" and "continuous".Suppose that the function f is differentiable at the point x = a.Then f(a) is defined andlimit (h -> 0) [f(a+h) - f(a)]/h exists (has a finite value).If this limit exists, then it follows thatlimit (h -> 0) [f(a+h) - f(a)] exists and equals 0.Hence limit (h -> 0) f(a+h) exists and equals f(a).Therefore f is continuous at x = a.


Every continuous function is integrible but converse is not true every integrable function is not continuous?

That's true. If a function is continuous, it's (Riemman) integrable, but the converse is not true.


How do you find critical value for a total revenue function?

If it is a differentiable function, you find the value at which its derivative is 0. But in general, you can plot it as a line graph and see where it peaks.