Wherever a function is differentiable, it must also be continuous. The opposite is not true, however. For example, the absolute value function, f(x) =|x|, is not differentiable at x=0 even though it is continuous everywhere.
yes...
Well, firstly, the derivative of a function simply refers to slope. Usually we say that the function is not differentiable at a point.Say you have a function such as this:f(x)=|x|Another way to represent that would be as a piece-wise function:g(x) = { -x for x= 0The problem arises at the specific point x=0. If you look at the slope--the change in the function--from the left and right of x, you notice that it is different, negative 1 and positive 1. So, we can say that the function is not differentiable at x=0 because of that sudden change.There are however, a few functions that are nowhere differentiable. One example is the Weirstrass function. The even more ironic thing about this function is that it is continuous everywhere! Since this function is not differentiable anywhere, many might call it a non-differentiable function.There are absolutely other examples.
Not according to the usual definitions of "differentiable" and "continuous".Suppose that the function f is differentiable at the point x = a.Then f(a) is defined andlimit (h -> 0) [f(a+h) - f(a)]/h exists (has a finite value).If this limit exists, then it follows thatlimit (h -> 0) [f(a+h) - f(a)] exists and equals 0.Hence limit (h -> 0) f(a+h) exists and equals f(a).Therefore f is continuous at x = a.
If it is a differentiable function, you find the value at which its derivative is 0. But in general, you can plot it as a line graph and see where it peaks.
No, it isn't. It's only differentiable at 0, and not throughout any neighbourhood.
No.
Weistrass function is continuous everywhere but not differentiable everywhere
Definition: A function f is differentiable at a if f'(a) exists. it is differentiable on an open interval (a, b) [or (a, ∞) or (-∞, a) or (-∞, ∞)]if it is differentiable at every number in the interval.Example: Where is the function f(x) = |x| differentiable?Answer:1. f is differentiable for any x > 0 and x < 0.2. f is not differentiable at x = 0.That's mean that the curve y = |x| has not a tangent at (0, 0).Thus, both continiuty and differentiability are desirable properties for a function to have. These properties are related.Theorem: If f is differentiable at a, then f is continuous at a.The converse theorem is false, that is, there are functions that are continuous but not differentiable. (As we saw at the example above. f(x) = |x| is contionuous at 0, but is not differentiable at 0).The three ways for f not to be differentiable at aare:a) if the graph of a function f has a "corner" or a "kink" in it,b) a discontinuity,c) a vertical tangent
Wherever a function is differentiable, it must also be continuous. The opposite is not true, however. For example, the absolute value function, f(x) =|x|, is not differentiable at x=0 even though it is continuous everywhere.
If the graph of the function is a continuous line then the function is differentiable. Also if the graph suddenly make a deviation at any point then the function is not differentiable at that point . The slope of a tangent at any point of the graph gives the derivative of the function at that point.
yes...
The letter Z tile is worth ten (10) points in standard scrabble. Z=10 points. Depending on its position, the 'Z' score can be doubled, re-doubled, tripled or re-tripled and it can also carry the score of the word to which it will be connected.
Frank W. Warner has written: 'Foundations of differentiable manifolds and Lie groups' -- subject(s): Differentiable manifolds, Lie groups
Let f be a function with domain D in R, the real numbers, and D is an open set in R. Then the derivative of f at the point c is defined as: f'(c) =lim as x-> c of the difference quotient [f(x)-f(c)]/[x-c] If that limit exits, the function is called differentiable at c. If f is differentiable at every point in D then f is called differentiable in D.
A function is differentiable at a point if the derivative exists there.
n they re stupid