To find the inverse of a function, simply switch the variables x and y. So for the function y=7x+3, the inverse would be x=7y+3, or y=(x-3)/7.
The only trig functions i can think of with horizontal assymptotes are the inverse trig functions. and they go assymptotic for everytime the non-inverse function is equal to zero.
29
Yes.
The identity function.
The inverse of a logarithmic function is an exponential function. So to find the "inverse" of the log function, you use the universal power key, unless you're finding the inverse of a natural log, then you use the e^x key.
The inverse of the function y = x is denoted as y = x. The inverse function essentially swaps the roles of x and y, so the inverse of y = x is x = y. In other words, the inverse function of y = x is the function x = y.
The inverse of the inverse is the original function, so that the product of the two functions is equivalent to the identity function on the appropriate domain. The domain of a function is the range of the inverse function. The range of a function is the domain of the inverse function.
No. The inverse of an exponential function is a logarithmic function.
The original function's RANGE becomes the inverse function's domain.
-6 is a number, not a function and so there is not an inverse function.
The inverse of the cubic function is the cube root function.
Check out the acos function.
X squared is not an inverse function; it is a quadratic function.
The inverse function means the opposite calculation. The inverse function of "add 6" would be "subtract 6".
Range
No. A simple example of this is y = x2; the inverse is x = y2, which is not a function.