Integral( sin(2x)dx) = -(cos(2x)/2) + C
Chat with our AI personalities
Using chain rule:integral of cos2x dx= 1/2 * sin2x + C
-4
Sin2x = radical 2
The integral of cot (x) dx is ln (absolute value (sin (x))) + C. Without using the absolute value, you can use the square root of the square, i.e. ln (square root (sin2x)) + C
∫ xsin(2x) dx = (-1/2)xcos2x + (1/4)sin2x You get this by using Integration by Parts. An integral in the form ∫udv can be written as uv-∫vdu In the case of your problem u=x, du=1, dv=sin2x, v=(-1/2)cos2x <--You get v by integrating dv Using the formula ∫udv = uv- ∫vdu and by plugging in what has been defined above you get ∫xsin(2x)dx = (-1/2)xcos2x - ∫(-1/2)cos2x(1) By integrating ∫(-1/2)cos2x, you get (-1/4)sin2x. When you plug that back in, you get ∫xsin2xdx=(-1/2)xcos2x-(-1/4)sin2x or just simply ∫xsin(2x)dx = (-1/2)xcos(2x) + (1/4)sin(2x)