There is insufficient information for us to even begin to understand this question. Please edit the question to include more context or relevant information.
Chat with our AI personalities
Wherever there is an x substitute -2 and calculate the resulting sum: f(x) = 3x² - x → f(-2) = 3 × (-2)² - (-2) = 3 × 4 + 2 = 12 + 2 = 14
f(x) = √(2x -3) f(x) = (2x - 3)^(1/2) f'(x) = (1/2)[(2x - 3)^(1/2 - 1)](2) f'(x) = (2x - 3)^(-1/2) f'(x) = 1/[(2x - 3)^(1/2)] f'(x) = 1/√(2x -3)
f(x) = 2 cos 3x The amplitude: A = |2| = 2 The maximum value of the function: 2 The minimum value of the function: -2 The range: [-2, 2]
F(x)=x*Sqrt(x^2+1) let f(x)=x let g(x)=Sqrt(x^2+1) F'(x)=f'(x)*g(x)+f(x)*g'(x) f'(x)=1 Use chain rule: g'(x)=(x)*(x^2+1)^(-1/2) F'(x)=Sqrt(x^2+1)+(x^2)/Sqrt(x^2+1)
f(x)=|x| |x| = sqrt(x^2) f(x) = sqrt (x^2) f'(x)=1/2sqrt(x^2) d/dx(x^2) f'(x) = 2x /2sqrt(x^2) f'(x) = x/sqrt(x^2) f'(x)= x /|x| --------------------- Note: d/dx [sqrt(x^2] = d/dx [x^(1/2)] =(1/2)x^(-1/2)=1/2x^(1/2)=1/2sqrt(x)