answersLogoWhite

0

sin2csc2-sin2 (using the fact that the sin is the reciprocal of csc) = 1-sin2

User Avatar

Wiki User

11y ago

Still curious? Ask our experts.

Chat with our AI personalities

JudyJudy
Simplicity is my specialty.
Chat with Judy
RossRoss
Every question is just a happy little opportunity.
Chat with Ross
BeauBeau
You're doing better than you think!
Chat with Beau

Add your answer:

Earn +20 pts
Q: What is equivalent to sin 2 csc 2 - sin 2?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Calculus

How do you find vertical asymptotes for trig functions?

Only the cofunctions have asymptotes. Because csc x = 1/sin x, csc x has vertical asymptotes whenever the denominator is equal to 0, or whenever sin x = 0, which are the multiples of pi (0,1,2,3,4,...). For sec x, it's 1/cos x, thus cos x = 0, x = pi/2 + pi*n, where n is a counting number (0,1,2,etc...). cot x = cos x/sin x, thus its vertical asymptotes are the same as those of csc x. If the function is transformed, look at the number in front of x (for example, csc (2x), that number would be 2)), and divide the fundamental asymptotes (above) by that number. The vertical asymptotes of csc (2x) would be (pi/2, 2pi/2, 3pi/2, etc...).


H ow do you verify that csc theta tan theta sec theta?

csc[]tan[] = sec[]. L: Change csc[] into one over sin[]. Change tan[] into sin[] over cos[]. R: Change sec[] into one over cos[]. 1/sin[] times sin[]/cos[] = 1/cos[]. L: To multiply 2 fractions, multiply the numerators, and multiply the denominators, and put the numerators' product over the denominators' product. R: Nothing more to do. sin[]/sin[]cos[] = 1/cos[]. L: You have a sin[] on both top and bottom. Cross them off to get a one on the top. 1/cos[] = 1/cos[]. Done. [] is theta. L is the left side of the equation. R is the right side.


Solution for tan x plus cot x divided by sec x csc x?

(tan x + cot x)/sec x . csc x The key to solve this question is to turn tan x, cot x, sec x, csc x into the simpler form. Remember that tan x = sin x / cos x, cot x = 1/tan x, sec x = 1/cos x, csc x = 1/sin x The solution is: [(sin x / cos x)+(cos x / sin x)] / (1/cos x . 1/sin x) [(sin x . sin x + cos x . cos x) / (sin x . cos x)] (1/sin x cos x) [(sin x . sin x + cos x . cos x) / (sin x . cos x)] (sin x . cos x) then sin x. sin x + cos x . cos x sin2x+cos2x =1 The answer is 1.


How do you simplify sec x cot x?

sec(x)*cot(x) = (1/cos(x))*(cos(x)/sin(x)) = (1/sin(x)) = csc(x)


What is the derivative of csc x?

The derivative of csc(x) is -cot(x)csc(x).