Finding the nth term is much simpler than it seems. For example, say you had the sequence:
1,4,7,10,13,16 Sequence 1
First we find the difference between the numbers.
1 (3) 4 (3) 7 (3) 10 (3) 13 (3) 16
The difference is the same: 3. So the start of are formula will be 3n.
If it was 3n, the sequence would be 3,6,9,12,15,18 Sequence 2
But this is not our sequence. Notice that each number on sequence 2 is 2 more than sequence 1. this means are final formula will be:
3n+1
Test it out, it works!
the first 4 terms of the sequence which has the nth term is a sequence of numbers that that goe together eg. 8,12,16,20,24 the nth term would be 4n+4
nth term Tn = arn-1 a = first term r = common factor
nth term is 8 - n. an = 8 - n, so the sequence is {7, 6, 5, 4, 3, 2,...} (this is a decreasing sequence since the successor term is smaller than the nth term). So, the sum of first six terms of the sequence is 27.
To find the nth term of an arithmetic sequence, you need to first identify the common difference between consecutive terms. In this case, the common difference is -2 (subtract 2 from each term to get the next term). The formula to find the nth term of an arithmetic sequence is: a_n = a_1 + (n-1)d, where a_n is the nth term, a_1 is the first term, n is the term number, and d is the common difference. Plugging in the values from the sequence (a_1=7, d=-2), the nth term formula becomes: a_n = 7 + (n-1)(-2) = 9 - 2n.
(Term)n = 59 - 2n
Find the formula of it.
To determine the nth term of the sequence 2581114, we need to identify a pattern or rule governing the sequence. However, without additional context or a specific formula defining the sequence, it's impossible to ascertain the nth term. If you can provide more details about how the sequence is generated or the rules behind it, I can help you find the nth term.
The given sequence is an arithmetic sequence with a common difference of 6. To find the nth term of this sequence, we can use the following formula: nth term = first term + (n - 1) x common difference where n is the position of the term we want to find. In this sequence, the first term is 1 and the common difference is 6. Substituting these values into the formula, we get: nth term = 1 + (n - 1) x 6 nth term = 1 + 6n - 6 nth term = 6n - 5 Therefore, the nth term of the sequence 1, 7, 13, 19 is given by the formula 6n - 5.
To find the nth term of a sequence, we first need to identify the pattern or rule governing the sequence. In this case, the sequence appears to be increasing by 4, then 8, then 12, then 16, and so on. This pattern suggests that the nth term can be represented by the formula n^2 + n, where n is the position of the term in the sequence. So, the nth term for the given sequence is n^2 + n.
i dont get it
If the sequence is non-linear, you need to establish how it is defined.
123456789 * * * * * The nth term is 3n
The given sequence is 1, 6, 13, 22, 33. To find the nth term, we can observe that the differences between consecutive terms are 5, 7, 9, and 11, which indicates that the sequence is quadratic. The nth term can be expressed as ( a_n = n^2 + n ), where ( a_n ) is the nth term of the sequence. Thus, the formula for the nth term is ( a_n = n^2 + n ).
The nth term is Un = a + (n-1)*d where a = U1 is the first term, and d is the common difference.
To find the nth term of a sequence, we first need to identify the pattern or rule that governs the sequence. In this case, the sequence is decreasing by 6 each time. Therefore, the nth term can be represented by the formula: 18 - 6(n-1), where n is the position of the term in the sequence.
6n-5 is the nth term of this sequence
To find the nth term of the sequence 5, 15, 29, 47, 69, we first determine the differences between consecutive terms: 10, 14, 18, and 22. The second differences are constant at 4, indicating that the nth term is a quadratic function. By fitting the quadratic formula ( an^2 + bn + c ) to the sequence, we find that the nth term is ( 2n^2 + 3n ). Thus, the nth term of the sequence is ( 2n^2 + 3n ).