nth term Tn = arn-1 a = first term r = common factor
If you remember taking sequences, you'll recall that there are three main types: 1)Arithmetic Sequence 2)Geometric Sequence 3)Varied-formula Sequence If the difference between the terms is additional or subractional then its an arithmetic sequence, lets check if this is the case, subtract the first term from the second and the second from the third etc : 1, 2, 4, 8, 16 2-1=1 4-2=2 8-4=4....all the answers are not constant so it is not an arithmetic sequence In a geometric sequence, the difference is in multiplication or division so we divide like this t2/t1 then t3/t2 and then t4/t3 and so on: 2/1=2 4/2=2 8/4=2...all the numbers are constant so this sequence we have here is a geometric sequence to find the nth term we use a formula it varies from the kind of sequence you are using, the formula for a geometric sequence is: tn=t1*r^(n-1) The formula might look confusing so ill write it down for you: "term n= term 1 multiplied by common ratio to the power n-1" The 'common ratio' is the constant so in this case it equals 2. tn=1*2^(n-l) that is the farthest you can go, if the question gives you the nth term then you may substitute it yourself. You didn't make yourself very clear with the last part of your question...
Finding the nth term is much simpler than it seems. For example, say you had the sequence: 1,4,7,10,13,16 Sequence 1 First we find the difference between the numbers. 1 (3) 4 (3) 7 (3) 10 (3) 13 (3) 16 The difference is the same: 3. So the start of are formula will be 3n. If it was 3n, the sequence would be 3,6,9,12,15,18 Sequence 2 But this is not our sequence. Notice that each number on sequence 2 is 2 more than sequence 1. this means are final formula will be: 3n+1 Test it out, it works!
Check if the given sequences are quadratic sequences. 7 10 15 22 21 42 The first difference: 3 5 7 1 21. The second difference: 2 2 6 20. Since the second difference is not constant, then the given sequence is not a quadratic sequence. 2 9 18 29 42 57 The first difference: 7, 9, 11, 13, 15. The second difference: 2 2 2 2. Since the second difference is constant, then the given sequence is a quadratic sequence. Therefore, contains a n2 term. Let n = 1, 2, 3, 4, 5, 6, ... Now, let's refer the n2 terms as, 1, 4, 9, 16, 25, 36. As you see, the terms of the given sequence and n2 terms differ by 1, 5, 9, 13, 17, 21 which is an arithmetic sequence,say {an} with a common difference d = 4 and the first term a = 1. Thus, the nth term formula for this arithmetic sequence is an = a + (n - 1)d = 1 + 4(n - 1) = 4n - 3. Therefore, we can find any nth term of the given sequence by using the formula, nth term = n2 + 4n - 3 (check, for n = 1, 2, 3, 4, 5, 6, ... and you'll obtain the given sequence) 4 15 32 55 85 119 The first difference: 11, 17, 23, 30, 34. The second difference: 6 6 7 4. Since the second difference is not constant, then the given sequence is not a quadratic sequence. 5 12 27 50 81 120 The first difference: 7, 15, 23, 31, 39. The second difference: 8 8 8 8. Since the second difference is constant, then the given sequence is a quadratic sequence. I tried to refer the square terms of sequences such as n2, 2n2, 3n2, but they didn't work, because when I subtracted their terms from the terms of the original sequence I couldn't find a common difference among the terms of those resulted sequences. But, 4n2 works. Let n = 1, 2, 3, 4, 5, 6, ... Now, let's refer the 4n2 terms as, 4, 16, 36, 64, 100, 144. As you see, the terms of the given sequence and 4n2 terms differ by 1, -4, -9, -14, -19, -24 which is an arithmetic sequence, say {an} with a common difference d = -5 and the first term a = 1. Thus, the nth term formula for this arithmetic sequence is an = a + (n - 1)d = 1 -5(n - 1) = -5n + 6. Therefore, we can find any nth term of the given sequence by using the formula, nth term = 4n2 - 5n + 6 (check, for n = 1, 2, 3, 4, 5, 6, ... and you'll obtain the given sequence)
2500, 100n2Restate the question: what are the 5th and nth term of (10n)2?If this is not your question, please clarify and resubmit the question.Assuming the first term is when n=1, then the 5th term is (10x5)2 = (50)2 =2500.The nth term would be just (10n)2, although you could expand and simplify to get (102)(n2) = 100n2.
The nth term of an arithmetic sequence = a + [(n - 1) X d]
The nth term in this arithmetic sequence is an=26+(n-1)(-8).
The difference between successive terms in an arithmetic sequence is a constant. Denote this by r. Suppose the first term is a. Then the nth term, of the sequence is given by t(n) = (a-r) + n*r or a + (n-1)*r
The nth term is -7n+29 and so the next term will be -6
The given sequence is an arithmetic sequence with a common difference that increases by 1 with each term. To find the nth term of an arithmetic sequence, you can use the formula: nth term = a + (n-1)d, where a is the first term, n is the term number, and d is the common difference. In this case, the first term (a) is 3 and the common difference (d) is increasing by 1, so the nth term would be 3 + (n-1)(n-1) = n^2 + 2.
The given sequence is an arithmetic sequence with a common difference of 6. To find the nth term of this sequence, we can use the following formula: nth term = first term + (n - 1) x common difference where n is the position of the term we want to find. In this sequence, the first term is 1 and the common difference is 6. Substituting these values into the formula, we get: nth term = 1 + (n - 1) x 6 nth term = 1 + 6n - 6 nth term = 6n - 5 Therefore, the nth term of the sequence 1, 7, 13, 19 is given by the formula 6n - 5.
The given sequence is an arithmetic sequence with a common difference of 4 between each term. To find the nth term of an arithmetic sequence, we use the formula: nth term = a + (n-1)d, where a is the first term, d is the common difference, and n is the term number. In this case, the first term (a) is -3, the common difference (d) is 4, and the term number (n) is the position in the sequence. So, the nth term of the given sequence is -3 + (n-1)4 = 4n - 7.
The nth term is referring to any term in the arithmetic sequence. You would figure out the formula an = a1+(n-1)d-10where an is your y-value, a1 is your first term in a number sequence (your x-value), n is the term you're trying to find, and d is the amount you're increasing by.
The nth term for that arithmetic progression is 4n-1. Therefore the next term (the fifth) in the sequence would be (4x5)-1 = 19.
tn = a + (n - 1)d where a is the first term and d is the difference between each term.
7 - 4n where n denotes the nth term and n starting with 0
I believe the answer is: 11 + 6(n-1) Since the sequence increases by 6 each term we can find the value of the nth term by multiplying n-1 times 6. Then we add 11 since it is the starting point of the sequence. The formula for an arithmetic sequence: a_{n}=a_{1}+(n-1)d