The formula to find the axis of symmetry for a quadratic function in the form (y = ax^2 + bx + c) is given by (x = -\frac{b}{2a}). This vertical line divides the parabola into two mirror-image halves. The axis of symmetry passes through the vertex of the parabola and is crucial for graphing the function.
Once you calculate the X coordinate using the axis of symmetry (X=-b/2a), you plug that value in for all of the X's in the equation of the parabola. You then solve the equation for the value of Y.
To find the equation of the axis of symmetry for a parabola given in the standard form (y = ax^2 + bx + c), you can use the formula (x = -\frac{b}{2a}). This value of (x) represents the vertical line that divides the parabola into two mirror-image halves. If the parabola is represented in vertex form (y = a(x-h)^2 + k), the axis of symmetry is simply the line (x = h).
To find the equation of the axis of symmetry for the quadratic function (y = x^2 - 8x - 9), use the formula (x = -\frac{b}{2a}), where (a = 1) and (b = -8). This gives (x = -\frac{-8}{2 \cdot 1} = 4). The vertex can be found by substituting this (x) value back into the original equation: (y = 4^2 - 8(4) - 9 = 16 - 32 - 9 = -25). Thus, the vertex is at the point ((4, -25)) and the axis of symmetry is the line (x = 4).
The axis of symmetry of a quadratic function in the form (y = ax^2 + bx + c) can be found using the formula (x = -\frac{b}{2a}). This vertical line divides the parabola into two mirror-image halves. To find the corresponding (y)-coordinate, substitute the axis of symmetry value back into the quadratic function.
y2 = 32x y = ±√32x the vertex is (0, 0) and the axis of symmetry is x-axis or y = 0
The formula to find the axis of symmetry for a quadratic function in the form (y = ax^2 + bx + c) is given by (x = -\frac{b}{2a}). This vertical line divides the parabola into two mirror-image halves. The axis of symmetry passes through the vertex of the parabola and is crucial for graphing the function.
By completing the square y = (x+3)2+1 Axis of symmetry and vertex: x = -3 and (-3, 1) Note that the parabola has no x intercepts because the discriminant is less than zero
Once you calculate the X coordinate using the axis of symmetry (X=-b/2a), you plug that value in for all of the X's in the equation of the parabola. You then solve the equation for the value of Y.
I'm assuming that you meant y = 2(x^2) +4. If it were only y = 2x +4, then this would be a linear equation and not a parabola. Anyways, use the equation x = -b/2a to find the x-value of your vertex AND your axis of symmetry. (Given the standard equation y = a(x^2) + bx + c) So, x = -0/2(2) - x = 0 (Axis of Symmetry) Now plug 0 back into your equation to find your y-value of your vertex. y = 2(0^2)+4 y=0 + 4 y = 4 Therefore Vertex = (0,4)
To find the equation of the axis of symmetry for the quadratic function (y = x^2 - 8x - 9), use the formula (x = -\frac{b}{2a}), where (a = 1) and (b = -8). This gives (x = -\frac{-8}{2 \cdot 1} = 4). The vertex can be found by substituting this (x) value back into the original equation: (y = 4^2 - 8(4) - 9 = 16 - 32 - 9 = -25). Thus, the vertex is at the point ((4, -25)) and the axis of symmetry is the line (x = 4).
The axis of symmetry of a quadratic function in the form (y = ax^2 + bx + c) can be found using the formula (x = -\frac{b}{2a}). This vertical line divides the parabola into two mirror-image halves. To find the corresponding (y)-coordinate, substitute the axis of symmetry value back into the quadratic function.
X= -b / 2a
y = 2x2 + 3x + 6 Since a > 0 (a = 2, b = 3, c = 6) the graph opens upward. The coordinates of the vertex are (-b/2a, f(-b/2a)) = (- 0.75, 4.875). The equation of the axis of symmetry is x = -0.75.
Your equation must be in y=ax^2+bx+c form Then the equation is x= -b/2a That is how you find the axis of symmetry
It depends on the vertex of what!
For example, y = ax2 + bx + c (the equation of a parabola). Every parabola has an axis of symmetry and the graph to either side of the axis of symmetry is a mirror image of the other side. It means that if we know a point on one side of the parabola, we can find its symmetric point to the other side, based on the axis of symmetry. Those symmetric points have opposite x-coordinate values, and the same y-coordinate value. The vertex only is a single point which lies on the axis of symmetry.