44
There are 5,461,512 such combinations.
64
A 4-digit number can range from 0000 to 9999, which includes all combinations of four digits. Since each digit can be any number from 0 to 9 (10 options), the total number of combinations is calculated as (10^4). Therefore, there are 10,000 different combinations for a 4-digit number.
100
6 of them.
There are 5,461,512 such combinations.
64
A 4-digit number can range from 0000 to 9999, which includes all combinations of four digits. Since each digit can be any number from 0 to 9 (10 options), the total number of combinations is calculated as (10^4). Therefore, there are 10,000 different combinations for a 4-digit number.
Number of 7 digit combinations out of the 10 one-digit numbers = 120.
100
To calculate the number of different 4-digit combinations that can be made using numbers 0 through 9, we use the concept of permutations. Since repetition is allowed, we use the formula for permutations with repetition, which is n^r, where n is the number of options for each digit (10 in this case) and r is the number of digits (4 in this case). Therefore, the number of different 4-digit combinations that can be made using numbers 0 through 9 is 10^4, which equals 10,000 combinations.
It depends on how many digit you are choosing from.
6 of them.
I am assuming you mean 3-number combinations rather than 3 digit combinations. Otherwise you have to treat 21 as a 2-digit number and equate it to 1-and-2. There are 21C3 combinations = 21*20*19/(3*2*1) = 7980 combinations.
There are 360 of them.
A 3-digit safe code can have combinations ranging from 000 to 999. This gives a total of 1,000 possible combinations, as each digit can be any number from 0 to 9. Therefore, the total number of combinations is 10 (choices for the first digit) × 10 (choices for the second digit) × 10 (choices for the third digit), which equals 1,000.
How many four digit combinations can be made from the number nine? Example, 1+1+2+5=9.