Until an "equals" sign shows up somewhere in the expression, there's nothing to prove.
It also equals 13 12.
The question contains an expression but not an equation. An expression cannot be solved.
x2+y2=2y into polar coordinates When converting Cartesian coordinates to polar coordinates, three standard converstion factors must be memorized: r2=x2+y2 r*cos(theta)=x r*sin(theta)=y From these conversions, you can easily get the above Cartesian equation into polar coordinates: r2=2rsin(theta), which reduces down (by dividing out 1 r on both sides) to: r=2sin(theta)
No
Cosine squared theta = 1 + Sine squared theta
Until an "equals" sign shows up somewhere in the expression, there's nothing to prove.
To determine what negative sine squared plus cosine squared is equal to, start with the primary trigonometric identity, which is based on the pythagorean theorem...sin2(theta) + cos2(theta) = 1... and then solve for the question...cos2(theta) = 1 - sin2(theta)2 cos2(theta) = 1 - sin2(theta) + cos2(theta)2 cos2(theta) - 1 = - sin2(theta) + cos2(theta)
It also equals 13 12.
The question contains an expression but not an equation. An expression cannot be solved.
If there is a plus in between, that would be equal to 1, as a result of the Pythagorean Theorem. Otherwise, you can convert this into other forms with some of the trigonometric identities for multiplication, but you won't really get it into a simpler form.
Yes, it is.
It depends if 1 plus tan theta is divided or multiplied by 1 minus tan theta.
tan2(theta) + 5*tan(theta) = 0 => tan(theta)*[tan(theta) + 5] = 0=> tan(theta) = 0 or tan(theta) = -5If tan(theta) = 0 then tan(theta) + cot(theta) is not defined.If tan(theta) = -5 then tan(theta) + cot(theta) = -5 - 1/5 = -5.2
104
x2+y2=2y into polar coordinates When converting Cartesian coordinates to polar coordinates, three standard converstion factors must be memorized: r2=x2+y2 r*cos(theta)=x r*sin(theta)=y From these conversions, you can easily get the above Cartesian equation into polar coordinates: r2=2rsin(theta), which reduces down (by dividing out 1 r on both sides) to: r=2sin(theta)
No