4
Divide by 'x'; x2+xy/x = x(x+y)
(y-2) (x+4)
xy plus 2x plus 4y plus 8 or (xy+2x) + (4y+8) or x(y+2) + 4(y+2) or (x+4)(y+2)
(x - 1)(2x + y)
y=f(x)= x(2x+y)=7 f(x)=2x^2 +xy -7 = 0 y=2x^2 +xy -7 y-xy -7 + 2x^2 = 0 y(1-x)=2x^2-7 y=(2x^2-7) / (1-x) Excuse the working. Y equals 2 X squared minus 7 all divided by 1-X
xy-2x+4y-8 x(y-2)+4(y-2) (x+4)(y-2)
2x-y8 where x is 6: xy=8-2=6
(2x - 3y)(x + y)
y = (x^2)(sin x)(2x)(cos x) - 2sin xy' = [[(x^2)(sin x)][(2x)(cos x)]]' - (2sin x)'y' = [[(x^2)(sin x)]'[(2x)(cos x)] + [(2x)(cos x)]'[(x^2)(sin x)]]- (2sin x)'y' = [[(x^2)'(sin x) + (sin x)'(x^2)][(2x)(cos x)] + [(2x)'(cos x) + (cos x)'(2x)][(x^2)(sin x)] ] - 2(cos x)y' = [[(2x)(sin x )+ (cos x)(x^2)][(2x)(cos x)] + [2cos x - (sin x)(2x)][(x^2)(sin x)]] - 2(cos x)y' = (4x^2)(sin x cos x) + (2x^3)(cos x)^2 + (2x^2)(sin x cos x) - (2x^3)(sin x)^2 - 2cos xy' = (6x^2)(sin x cos x) + (2x^3)(cos x)^2 - (2x^3)(sin x)^2 - 2cos x (if you want, you can stop here, or you can continue)y' = (3x^2)(2sin x cos x) + (2x^3)[(cos x)^2 - (sin x)^2] - 2cos xy' = (3x^2)(sin 2x) + (2x^3)(cos 2x) - 2 cos xy' = (2x^3)(cos 2x) + (3x^2)(sin 2x) - 2 cos x
0
(x + 4)(y - 2)