Unfortunately, limitations of the browser used by Answers.com means that we cannot see most symbols. It is therefore impossible to give a proper answer to your question. Please resubmit your question spelling out the symbols as "plus", "minus", "equals", "squared", "cubed" etc.
There are no operators between n and 2, nor between 2 and 10.
no clue
To find the nth term of this sequence, we first need to identify the pattern. The differences between consecutive terms are 5, 9, 13, 17, and so on. These are increasing by 4 each time. This means that the nth term can be calculated using the formula n^2 + 4n + 1. So, the nth term for the sequence 5, 10, 19, 32, 49 is n^2 + 4n + 1.
To find the nth term of the sequence 5, 15, 29, 47, 69, we first determine the differences between consecutive terms: 10, 14, 18, and 22. The second differences are constant at 4, indicating that the nth term is a quadratic function. By fitting the quadratic formula ( an^2 + bn + c ) to the sequence, we find that the nth term is ( 2n^2 + 3n ). Thus, the nth term of the sequence is ( 2n^2 + 3n ).
560
The common difference (d) between successive terms is -9. The first term (a) is 26 The formula for the nth term [a(n)] of an Arithmetic Series is , a + (n - 1)d. Inputting the values for a and d gives :- a(n) = 26 - 9(n - 1) = 26 - 9n + 9 = 35 - 9n......where n = 1,2,3......
no clue
To find the nth term of this sequence, we first need to identify the pattern. The differences between consecutive terms are 5, 9, 13, 17, and so on. These are increasing by 4 each time. This means that the nth term can be calculated using the formula n^2 + 4n + 1. So, the nth term for the sequence 5, 10, 19, 32, 49 is n^2 + 4n + 1.
The first three terms of the nth term 4n-2 would be obtained by plugging in n=1, n=2, and n=3 into the expression. Therefore, the first term would be 4(1) - 2 = 2, the second term would be 4(2) - 2 = 6, and the third term would be 4(3) - 2 = 10. So, the first three terms are 2, 6, and 10 for the given nth term 4n-2.
10n + 1
To find the nth term of the sequence 5, 15, 29, 47, 69, we first determine the differences between consecutive terms: 10, 14, 18, and 22. The second differences are constant at 4, indicating that the nth term is a quadratic function. By fitting the quadratic formula ( an^2 + bn + c ) to the sequence, we find that the nth term is ( 2n^2 + 3n ). Thus, the nth term of the sequence is ( 2n^2 + 3n ).
It is: nth term = -4n+14
The nth term is (2n - 12).
The nth term would be -2n+14 nth terms: 1 2 3 4 Sequence:12 10 8 6 This sequence has a difference of -2 Therefore it would become -2n. Replace n with 1 and you would get -2. To get to the first term you have to add 14. Therefore the sequence becomes -2n+14. To check your answer replace n with 2, 3 or 4. You will still obtain the number in the sequence that corresponds to the nth term. :)
The sequence has a difference of 10, so the nth term starts with 10n. Then to get to -8 from 10 you need to subtract 18. So the nth term is 10n - 18.
The given sequence appears to be increasing by 10 each time. To find the nth term, we can use the formula for arithmetic sequences: nth term = first term + (n-1) * common difference. In this case, the first term is 4 and the common difference is 10. Therefore, the nth term for this sequence would be 4 + (n-1) * 10, which simplifies to 10n - 6.
15(1)
The nth term is 3n+7 and so the next number will be 22