Un = 29 - 9n
They are: nth term = 6n-4 and the 14th term is 80
560
The given sequence is 11, 31, 51, 72 The nth term of this sequence can be expressed as an = 11 + (n - 1) × 20 Therefore, the nth term is 11 + (n - 1) × 20, where n is the position of the term in the sequence.
20-9x=n
Assuming 20 is n = 1, then the formula would be:27-7n
The nth term of the sequence is expressed by the formula 8n - 4.
Give the simple formula for the nth term of the following arithmetic sequence. Your answer will be of the form an + b.12, 16, 20, 24, 28, ...
+9
Willies
Un = 29 - 9n
The (n)th term = the (n - 1)th term + (2n + 1)
The given sequence is an arithmetic sequence with a common difference of 6, as each term increases by 6. To find the nth term of an arithmetic sequence, we use the formula: nth term = a + (n-1)d, where a is the first term, d is the common difference, and n is the term number. In this case, the first term a = 2, the common difference d = 6, and the term number n is not specified. Therefore, the nth term of the sequence 2, 8, 14, 20, 26 is 2 + (n-1)6.
They are: nth term = 6n-4 and the 14th term is 80
560
The given sequence is 11, 31, 51, 72 The nth term of this sequence can be expressed as an = 11 + (n - 1) × 20 Therefore, the nth term is 11 + (n - 1) × 20, where n is the position of the term in the sequence.
The explicit formula for an arithmetic sequence is given by an = a1 + (n-1)d, where a1 is the first term and d is the common difference. In this case, the first term a1 is 16, and the common difference d is 4. Therefore, the explicit formula for the arithmetic sequence is an = 16 + 4(n-1) = 4n + 12.