The nth term of an arithmetic sequence = a + [(n - 1) X d]
The sequence 3, 7, 11 is an arithmetic sequence where the first term is 3 and the common difference is 4. The nth term formula for an arithmetic sequence can be expressed as ( a_n = a_1 + (n - 1)d ), where ( a_1 ) is the first term and ( d ) is the common difference. Substituting the values, the nth term formula for this sequence is ( a_n = 3 + (n - 1) \cdot 4 ), which simplifies to ( a_n = 4n - 1 ).
7 - 4n where n denotes the nth term and n starting with 0
The given sequence is an arithmetic sequence where each term increases by 4. The first term (a) is 13, and the common difference (d) is 4. The nth term can be found using the formula: ( a_n = a + (n-1)d ). Therefore, the nth term is ( a_n = 13 + (n-1) \cdot 4 = 4n + 9 ).
The given sequence is an arithmetic sequence where each term decreases by 5. The first term (a) is -1 and the common difference (d) is -5. The nth term can be calculated using the formula ( a_n = a + (n-1)d ). Therefore, the nth term is ( a_n = -1 + (n-1)(-5) = -1 - 5(n-1) = -5n + 4 ).
The nth term of an arithmetic sequence = a + [(n - 1) X d]
The nth term in this arithmetic sequence is an=26+(n-1)(-8).
The difference between successive terms in an arithmetic sequence is a constant. Denote this by r. Suppose the first term is a. Then the nth term, of the sequence is given by t(n) = (a-r) + n*r or a + (n-1)*r
The nth term is -7n+29 and so the next term will be -6
Well, darling, it looks like we have a simple arithmetic sequence here. The common difference between each term is 1, so the nth term formula is just n + 3. So, if you want the nth term for 4 5 6 7 8, it's n + 3. Hope that clears things up for ya!
The sequence 3, 7, 11 is an arithmetic sequence where the first term is 3 and the common difference is 4. The nth term formula for an arithmetic sequence can be expressed as ( a_n = a_1 + (n - 1)d ), where ( a_1 ) is the first term and ( d ) is the common difference. Substituting the values, the nth term formula for this sequence is ( a_n = 3 + (n - 1) \cdot 4 ), which simplifies to ( a_n = 4n - 1 ).
The given sequence is an arithmetic sequence with a common difference that increases by 1 with each term. To find the nth term of an arithmetic sequence, you can use the formula: nth term = a + (n-1)d, where a is the first term, n is the term number, and d is the common difference. In this case, the first term (a) is 3 and the common difference (d) is increasing by 1, so the nth term would be 3 + (n-1)(n-1) = n^2 + 2.
The given sequence is an arithmetic sequence with a common difference of 6. To find the nth term of this sequence, we can use the following formula: nth term = first term + (n - 1) x common difference where n is the position of the term we want to find. In this sequence, the first term is 1 and the common difference is 6. Substituting these values into the formula, we get: nth term = 1 + (n - 1) x 6 nth term = 1 + 6n - 6 nth term = 6n - 5 Therefore, the nth term of the sequence 1, 7, 13, 19 is given by the formula 6n - 5.
10n + 1
The given sequence is an arithmetic sequence with a common difference of 4 between each term. To find the nth term of an arithmetic sequence, we use the formula: nth term = a + (n-1)d, where a is the first term, d is the common difference, and n is the term number. In this case, the first term (a) is -3, the common difference (d) is 4, and the term number (n) is the position in the sequence. So, the nth term of the given sequence is -3 + (n-1)4 = 4n - 7.
The nth term for that arithmetic progression is 4n-1. Therefore the next term (the fifth) in the sequence would be (4x5)-1 = 19.
The nth term is referring to any term in the arithmetic sequence. You would figure out the formula an = a1+(n-1)d-10where an is your y-value, a1 is your first term in a number sequence (your x-value), n is the term you're trying to find, and d is the amount you're increasing by.