The key letter in finding the axis of symmetry for a quadratic function in the standard form (y = ax^2 + bx + c) is (b). The axis of symmetry can be calculated using the formula (x = -\frac{b}{2a}), where (a) is the coefficient of (x^2). This formula provides the x-coordinate of the vertex of the parabola, which is also the line of symmetry.
To find the equation of the axis of symmetry for a parabola given in the standard form (y = ax^2 + bx + c), you can use the formula (x = -\frac{b}{2a}). This value of (x) represents the vertical line that divides the parabola into two mirror-image halves. If the parabola is represented in vertex form (y = a(x-h)^2 + k), the axis of symmetry is simply the line (x = h).
To find the equation of the axis of symmetry for the quadratic function (y = x^2 - 8x - 9), use the formula (x = -\frac{b}{2a}), where (a = 1) and (b = -8). This gives (x = -\frac{-8}{2 \cdot 1} = 4). The vertex can be found by substituting this (x) value back into the original equation: (y = 4^2 - 8(4) - 9 = 16 - 32 - 9 = -25). Thus, the vertex is at the point ((4, -25)) and the axis of symmetry is the line (x = 4).
The formula to find the axis of symmetry for a quadratic function in the form (y = ax^2 + bx + c) is given by (x = -\frac{b}{2a}). This vertical line divides the parabola into two mirror-image halves. The axis of symmetry passes through the vertex of the parabola and is crucial for graphing the function.
The vertical line containing the vertex of a parabola is called the axis of symmetry. This line is perpendicular to the directrix and divides the parabola into two mirror-image halves. For a parabola defined by the equation (y = ax^2 + bx + c), the axis of symmetry can be found using the formula (x = -\frac{b}{2a}).
The axis of symmetry is x = -2.
axis of symmetry is x=0 Vertex is (0,0) So the answer is : YES
Vertex = (0,0) Line of symmetry = y axis You should of known that as this function is only X^2
In the form y = ax² + bx + c the axis of symmetry is given by the line x = -b/2a The axis of symmetry runs through the vertex, and the vertex is given by (-b/2a, -b²/4a + c). For y = 2x² + 4x - 10: → axis of symmetry is x = -4/(2×2) = -4/4 = -1 → vertex = (-1, -4²/(4×2) - 10) = (-1, -16/8 - 10) = (-1, -12)
It is (-1, 3).
y2 = 32x y = ±√32x the vertex is (0, 0) and the axis of symmetry is x-axis or y = 0
2
By completing the square y = (x+3)2+1 Axis of symmetry and vertex: x = -3 and (-3, 1) Note that the parabola has no x intercepts because the discriminant is less than zero
The key letter in finding the axis of symmetry for a quadratic function in the standard form (y = ax^2 + bx + c) is (b). The axis of symmetry can be calculated using the formula (x = -\frac{b}{2a}), where (a) is the coefficient of (x^2). This formula provides the x-coordinate of the vertex of the parabola, which is also the line of symmetry.
How about y = (x - 2)2 = x2 - 4x + 4 ? That is the equation of a parabola whose axis of symmetry is the vertical line, x = 2. Its vertex is located at the point (2, 0).
Assume the expression is: y = x² - 6x + 5 Complete the squares to get: y = x² - 6x + 9 + 5 - 9 = (x - 3)² - 4 By the vertex form: y = a(x - h)² + k where x = h is the axis of symmetry x = 3 is the axis of symmetry.
D