There is no general formula. You need to measure it or else have a lot more information.
y=2(x-3)+1
To find the vertex of a quadratic equation in standard form, (y = ax^2 + bx + c), you can use the vertex formula. The x-coordinate of the vertex is given by (x = -\frac{b}{2a}). Once you have the x-coordinate, substitute it back into the equation to find the corresponding y-coordinate. The vertex is then the point ((-\frac{b}{2a}, f(-\frac{b}{2a}))).
That is the height of the triangle, the h in the formula a = 0.5b x h
The vertex angle is connected to the vertex point
In the subset sum problem, the concept of a vertex cover can be applied by representing each element in the set as a vertex in a graph. The goal is to find a subset of vertices (vertex cover) that covers all edges in the graph, which corresponds to finding a subset of elements that sums up to a target value in the subset sum problem.
look for the interceptions add these and divide it by 2 (that's the x vertex) for the yvertex you just have to fill in the x(vertex) however you can also use the formula -(b/2a)
Number of sides - 2
look for the interceptions add these and divide it by 2 (that's the x vertex) for the yvertex you just have to fill in the x(vertex) however you can also use the formula -(b/2a)
There is no general formula. You need to measure it or else have a lot more information.
In the formula for calculating a parabola the letters h and k stand for the location of the vertex of the parabola. The h is the horizontal place of the vertex on a graph and the k is the vertical place on a graph.
look for the interceptions add these and divide it by 2 (that's the x vertex) for the yvertex you just have to fill in the x(vertex) however you can also use the formula -(b/2a)
y=2(x-3)+1
The reduction of vertex cover to integer programming can be achieved by representing the vertex cover problem as a set of constraints in an integer programming formulation. This involves defining variables to represent the presence or absence of vertices in the cover, and setting up constraints to ensure that every edge in the graph is covered by at least one vertex. By formulating the vertex cover problem in this way, it can be solved using integer programming techniques.
If you mean "How many diagonals can be drawn from one vertex of a figure with 16 sides", the formula is n-3, where "n" being the number of sides of the figure. So 16-3 = 13 diagonals that can be drawn from one vertex.
In a polygon with n sides, the number of diagonals that can be drawn from one vertex is given by the formula (n-3). Therefore, in a 35-sided polygon, you can draw (35-3) = 32 diagonals from one vertex.
To find the vertex of a quadratic equation in standard form, (y = ax^2 + bx + c), you can use the vertex formula. The x-coordinate of the vertex is given by (x = -\frac{b}{2a}). Once you have the x-coordinate, substitute it back into the equation to find the corresponding y-coordinate. The vertex is then the point ((-\frac{b}{2a}, f(-\frac{b}{2a}))).