216 -1
The largest possible value using 8 bits in binary is actually quite simple. Binary is a numerical system that only uses 2 numbers (1 and 0) to determine value. Our system is decimal. (0-9) Now, a 'bit' is one number from the binary system. It can either be 1 or 0. So, 8 bits means using 8 digits in binary. 1 is greater than 0, so the largest value is 11111111. (8 'one's)
11111111; 255 or 1+2+4+8+16+32+64+128=255 Answer 255 There are 8 bits in a byte when all are set to zero (turned off) then the value is 0. When all of the bits in a byte are set to 1 (turned on) you get the largest value that a byte holds which is 255.
There are 8 bits in a byte, so a two byte integer would be 16 bits. The largest 16 bit integer possible would be 11111111111111112, which is 65535 in base 10.
674
Yes, a byte is 8 bits, and a one hexadecimal digit takes up four bits, so two hexadecimal digits can be stored in a byte. The largest hexadecimal digit is F (which is 15 in base ten.) In base two, this converts to 1111, which takes up four bits, which is why it only takes four bits to store a hexadecimal digit. With 8 bits, two hexadecimal digits can be stored (FF would be 11111111, which is 8 bits), and 8 bits make up a byte. Generally, 4 bits are always used to store a hexadecimal digit, using leading zeros where necessary. For example, the hexadecimal digit 5 would be stored as 0101, and the hexadecimal digits 5A would be stored as 01011010.
Binary: 1 bit Octal: 3 bits Hexadecimal: 4 bits Decimal: somewhere between 3 and 4 bits. In theory, about 3.32 bits.
0xffffffffffffffff As an unsigned 64-bit integer, this represents the value 18,446,744,073,709,551,615. However, as a signed 64-bit integer, this only represents the value -1. The signed range is -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807 making 0x7fffffffffffffff the largest possible positive value, and 0x8000000000000000 the smallest possible negative value.
To store the hexadecimal number FF, we need to convert it to binary first. FF in hexadecimal is equivalent to 1111 1111 in binary, which requires 8 bits to represent. Each hexadecimal digit corresponds to 4 bits in binary, so two hexadecimal digits (FF) require 8 bits to store.
4 bits equal to half byte.8 bits is one byte.when converting hexadecimal digits to binary, each hexadecimal digits will take 4 binary digits, which means 4 bits.Because one binary digit means one bit having two values [true/false] or [on/off] like that.. [0/1]we can represent one hexadecimal digit as 4 bits like..for [7] as hexadecimal, we can say [0111] in bits.
216 -1
A nibble (also known as a nybble or nyble) can represent half a character(two nibbles are needed for a valid ASCII character). A nibble is made up of 4 bits and those 4 bits are usually represented by a single hexadecimal value. 4 bits only allows for 16 combinations, 8 bits allows for 255. An ASCII character is represented by two hexadecimal characters, which is the same as 8 bits or two nibbles.
8
11b which is 1*2 + 1*1 = 3 would be for two bits. But a byte is 8 bits, so 2 bytes is 16 bits. The largest binary number is [2^16 - 1], which is 65535 (base ten)
The largest possible value using 8 bits in binary is actually quite simple. Binary is a numerical system that only uses 2 numbers (1 and 0) to determine value. Our system is decimal. (0-9) Now, a 'bit' is one number from the binary system. It can either be 1 or 0. So, 8 bits means using 8 digits in binary. 1 is greater than 0, so the largest value is 11111111. (8 'one's)
Each 4 bits of binary can make 1 hexadecimal digit. There are 16 hexadecimal characters including zero. This can be shown by the equation 2^4 = 16.
Eight.